关于一个循环随机漫步在t²上的局部时间

IF 0.4 Q4 STATISTICS & PROBABILITY
V. Bohun, A. Marynych
{"title":"关于一个循环随机漫步在t²上的局部时间","authors":"V. Bohun, A. Marynych","doi":"10.1090/tpms/1156","DOIUrl":null,"url":null,"abstract":"We prove a functional limit theorem for the number of visits by a planar random walk on \n\n \n \n \n Z\n \n 2\n \n \\mathbb {Z}^2\n \n\n with zero mean and finite second moment to the points of a fixed finite set \n\n \n \n P\n ⊂\n \n \n Z\n \n 2\n \n \n P\\subset \\mathbb {Z}^2\n \n\n. The proof is based on the analysis of an accompanying random process with immigration at renewal epochs in case when the inter-arrival distribution has a slowly varying tail.","PeriodicalId":42776,"journal":{"name":"Theory of Probability and Mathematical Statistics","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2021-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On the local time of a recurrent random walk on ℤ²\",\"authors\":\"V. Bohun, A. Marynych\",\"doi\":\"10.1090/tpms/1156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove a functional limit theorem for the number of visits by a planar random walk on \\n\\n \\n \\n \\n Z\\n \\n 2\\n \\n \\\\mathbb {Z}^2\\n \\n\\n with zero mean and finite second moment to the points of a fixed finite set \\n\\n \\n \\n P\\n ⊂\\n \\n \\n Z\\n \\n 2\\n \\n \\n P\\\\subset \\\\mathbb {Z}^2\\n \\n\\n. The proof is based on the analysis of an accompanying random process with immigration at renewal epochs in case when the inter-arrival distribution has a slowly varying tail.\",\"PeriodicalId\":42776,\"journal\":{\"name\":\"Theory of Probability and Mathematical Statistics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Theory of Probability and Mathematical Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/tpms/1156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Probability and Mathematical Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/tpms/1156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 1

摘要

我们证明了Z 2 \mathbb {Z}^2上具有零均值和有限第二矩的平面随机行走到固定有限集合P∧Z 2p \子集\mathbb {Z}^2上的点的访问次数的泛函极限定理。这一证明是基于在到达间分布有缓慢变化尾的情况下,在更新时期伴有移民的随机过程的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the local time of a recurrent random walk on ℤ²
We prove a functional limit theorem for the number of visits by a planar random walk on Z 2 \mathbb {Z}^2 with zero mean and finite second moment to the points of a fixed finite set P ⊂ Z 2 P\subset \mathbb {Z}^2 . The proof is based on the analysis of an accompanying random process with immigration at renewal epochs in case when the inter-arrival distribution has a slowly varying tail.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
0.00%
发文量
22
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信