Altay Sansal, Sribharath Kainkaryam, Ben Lasscock, A. Valenciano
{"title":"MDIO:多维能源数据的开源格式","authors":"Altay Sansal, Sribharath Kainkaryam, Ben Lasscock, A. Valenciano","doi":"10.1190/tle42070465.1","DOIUrl":null,"url":null,"abstract":"MDIO is a fully open-source data storage format that enables computational workflows for various high-dimensional energy data sets including seismic data and wind models. Designed to be efficient and flexible, MDIO provides interoperable software infrastructure with existing energy data standards. It leverages an open-source format called Zarr to enable data usage in the cloud and on-premises file systems. An overview of the data model and schema for MDIO is provided, and an open-source Python library developed to work with MDIO data is demonstrated. We explain how MDIO supports different computational workflows and discuss applications for data management, seismic imaging, machine learning, wind resource assessment, and real-time seismic visualization. Overall, MDIO gives researchers, practitioners, and developers in the energy sector a standardized and open approach to managing and sharing multidimensional energy data.","PeriodicalId":35661,"journal":{"name":"Leading Edge","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MDIO: Open-source format for multidimensional energy data\",\"authors\":\"Altay Sansal, Sribharath Kainkaryam, Ben Lasscock, A. Valenciano\",\"doi\":\"10.1190/tle42070465.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"MDIO is a fully open-source data storage format that enables computational workflows for various high-dimensional energy data sets including seismic data and wind models. Designed to be efficient and flexible, MDIO provides interoperable software infrastructure with existing energy data standards. It leverages an open-source format called Zarr to enable data usage in the cloud and on-premises file systems. An overview of the data model and schema for MDIO is provided, and an open-source Python library developed to work with MDIO data is demonstrated. We explain how MDIO supports different computational workflows and discuss applications for data management, seismic imaging, machine learning, wind resource assessment, and real-time seismic visualization. Overall, MDIO gives researchers, practitioners, and developers in the energy sector a standardized and open approach to managing and sharing multidimensional energy data.\",\"PeriodicalId\":35661,\"journal\":{\"name\":\"Leading Edge\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Leading Edge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1190/tle42070465.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Leading Edge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1190/tle42070465.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
MDIO: Open-source format for multidimensional energy data
MDIO is a fully open-source data storage format that enables computational workflows for various high-dimensional energy data sets including seismic data and wind models. Designed to be efficient and flexible, MDIO provides interoperable software infrastructure with existing energy data standards. It leverages an open-source format called Zarr to enable data usage in the cloud and on-premises file systems. An overview of the data model and schema for MDIO is provided, and an open-source Python library developed to work with MDIO data is demonstrated. We explain how MDIO supports different computational workflows and discuss applications for data management, seismic imaging, machine learning, wind resource assessment, and real-time seismic visualization. Overall, MDIO gives researchers, practitioners, and developers in the energy sector a standardized and open approach to managing and sharing multidimensional energy data.
期刊介绍:
THE LEADING EDGE complements GEOPHYSICS, SEG"s peer-reviewed publication long unrivalled as the world"s most respected vehicle for dissemination of developments in exploration and development geophysics. TLE is a gateway publication, introducing new geophysical theory, instrumentation, and established practices to scientists in a wide range of geoscience disciplines. Most material is presented in a semitechnical manner that minimizes mathematical theory and emphasizes practical applications. TLE also serves as SEG"s publication venue for official society business.