利用特征排序和分类器分析高维相关数据

Q2 Mathematics
Abhijeet R. Patil, Jongwha Chang, M. Leung, Sangjin Kim
{"title":"利用特征排序和分类器分析高维相关数据","authors":"Abhijeet R. Patil, Jongwha Chang, M. Leung, Sangjin Kim","doi":"10.1515/cmb-2019-0008","DOIUrl":null,"url":null,"abstract":"Abstract The Illumina Infinium HumanMethylation27 (Illumina 27K) BeadChip assay is a relatively recent high-throughput technology that allows over 27,000 CpGs to be assayed. The Illumina 27K methylation data is less commonly used in comparison to gene expression in bioinformatics. It provides a critical need to find the optimal feature ranking (FR) method for handling the high dimensional data. The optimal FR method on the classifier is not well known, and choosing the best performing FR method becomes more challenging in high dimensional data setting. Therefore, identifying the statistical methods which boost the inference is of crucial importance in this context. This paper describes the detailed performances of FR methods such as fisher score, information gain, chi-square, and minimum redundancy and maximum relevance on different classification methods such as Adaboost, Random Forest, Naive Bayes, and Support Vector Machines. Through simulation study and real data applications, we show that the fisher score as an FR method, when applied on all the classifiers, achieved best prediction accuracy with significantly small number of ranked features.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"7 1","pages":"98 - 120"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/cmb-2019-0008","citationCount":"4","resultStr":"{\"title\":\"Analyzing high dimensional correlated data using feature ranking and classifiers\",\"authors\":\"Abhijeet R. Patil, Jongwha Chang, M. Leung, Sangjin Kim\",\"doi\":\"10.1515/cmb-2019-0008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Illumina Infinium HumanMethylation27 (Illumina 27K) BeadChip assay is a relatively recent high-throughput technology that allows over 27,000 CpGs to be assayed. The Illumina 27K methylation data is less commonly used in comparison to gene expression in bioinformatics. It provides a critical need to find the optimal feature ranking (FR) method for handling the high dimensional data. The optimal FR method on the classifier is not well known, and choosing the best performing FR method becomes more challenging in high dimensional data setting. Therefore, identifying the statistical methods which boost the inference is of crucial importance in this context. This paper describes the detailed performances of FR methods such as fisher score, information gain, chi-square, and minimum redundancy and maximum relevance on different classification methods such as Adaboost, Random Forest, Naive Bayes, and Support Vector Machines. Through simulation study and real data applications, we show that the fisher score as an FR method, when applied on all the classifiers, achieved best prediction accuracy with significantly small number of ranked features.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"7 1\",\"pages\":\"98 - 120\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/cmb-2019-0008\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmb-2019-0008\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2019-0008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 4

摘要

摘要Illumina Infinium HumanMethylation27(Illumina 27K)BeadChip检测是一种相对较新的高通量技术,可检测超过27000个CpG。与生物信息学中的基因表达相比,Illumina 27K甲基化数据不太常用。它提供了找到用于处理高维数据的最优特征排序(FR)方法的关键需求。分类器上的最佳FR方法尚不清楚,在高维数据设置中,选择性能最好的FR方法变得更具挑战性。因此,在这种情况下,确定促进推理的统计方法至关重要。本文描述了fisher分数、信息增益、卡方、最小冗余和最大相关性等FR方法在Adaboost、随机森林、朴素贝叶斯和支持向量机等不同分类方法上的详细性能。通过仿真研究和实际数据应用,我们表明,fisher分数作为一种FR方法,当应用于所有分类器时,在具有显著少量排序特征的情况下,实现了最佳的预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analyzing high dimensional correlated data using feature ranking and classifiers
Abstract The Illumina Infinium HumanMethylation27 (Illumina 27K) BeadChip assay is a relatively recent high-throughput technology that allows over 27,000 CpGs to be assayed. The Illumina 27K methylation data is less commonly used in comparison to gene expression in bioinformatics. It provides a critical need to find the optimal feature ranking (FR) method for handling the high dimensional data. The optimal FR method on the classifier is not well known, and choosing the best performing FR method becomes more challenging in high dimensional data setting. Therefore, identifying the statistical methods which boost the inference is of crucial importance in this context. This paper describes the detailed performances of FR methods such as fisher score, information gain, chi-square, and minimum redundancy and maximum relevance on different classification methods such as Adaboost, Random Forest, Naive Bayes, and Support Vector Machines. Through simulation study and real data applications, we show that the fisher score as an FR method, when applied on all the classifiers, achieved best prediction accuracy with significantly small number of ranked features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信