木棉纤维改性成多孔三醋酸纤维素微珠用于溢油修复

IF 1.8 4区 材料科学 Q4 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY
Kang Zhi Yong, J. Zachariah, E. Chiang, M. Yoon
{"title":"木棉纤维改性成多孔三醋酸纤维素微珠用于溢油修复","authors":"Kang Zhi Yong, J. Zachariah, E. Chiang, M. Yoon","doi":"10.1680/jgrma.21.00064","DOIUrl":null,"url":null,"abstract":"Marine oil spills have been widely reported and bioremediation is proposed to be an environmentally friendly approach to clean these spills. However, maintaining a high biomass of oil-degrading bacteria has been proven challenging. Here, a carrier that enables simultaneous bacterial immobilization and oil absorption is proposed as a solution. Porous cellulose triacetate beads (PCTBs) derived from cellulose triacetate powder was obtained through the acetylation of kapok fibres. This study revealed that PCTBs with both 12.5% and 16.67% w/v precipitated in distilled water showed greater crude oil absorbency of 2.4850 ± 0.1326 g/g and 1.9852 ± 0.2343 g/g, respectively. Reusability tests of PCTBs showed promising results with no reduction in oil absorption after five reabsorption cycles. Successful immobilization of the oil-degrading bacteria, Acinetobacter venetianus on PCTBs was achieved and enumeration of bacteria showed no statistically significant differences compared to those on kapok fibres despite the raw fibres having a larger surface area. The SEM analysis revealed that A. venetianus adhered to the outer and inner walls of the beads through secreted exopolysaccharides. PCTBs with oil-degrading bacteria are potentially able to simultaneously absorb and degrade oil, thus highlighting the novelty of a working alternative to sustainable oil spill mitigation.","PeriodicalId":12929,"journal":{"name":"Green Materials","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Modification of kapok cotton fibres into porous cellulose triacetate beads for oil spill remediation efforts\",\"authors\":\"Kang Zhi Yong, J. Zachariah, E. Chiang, M. Yoon\",\"doi\":\"10.1680/jgrma.21.00064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Marine oil spills have been widely reported and bioremediation is proposed to be an environmentally friendly approach to clean these spills. However, maintaining a high biomass of oil-degrading bacteria has been proven challenging. Here, a carrier that enables simultaneous bacterial immobilization and oil absorption is proposed as a solution. Porous cellulose triacetate beads (PCTBs) derived from cellulose triacetate powder was obtained through the acetylation of kapok fibres. This study revealed that PCTBs with both 12.5% and 16.67% w/v precipitated in distilled water showed greater crude oil absorbency of 2.4850 ± 0.1326 g/g and 1.9852 ± 0.2343 g/g, respectively. Reusability tests of PCTBs showed promising results with no reduction in oil absorption after five reabsorption cycles. Successful immobilization of the oil-degrading bacteria, Acinetobacter venetianus on PCTBs was achieved and enumeration of bacteria showed no statistically significant differences compared to those on kapok fibres despite the raw fibres having a larger surface area. The SEM analysis revealed that A. venetianus adhered to the outer and inner walls of the beads through secreted exopolysaccharides. PCTBs with oil-degrading bacteria are potentially able to simultaneously absorb and degrade oil, thus highlighting the novelty of a working alternative to sustainable oil spill mitigation.\",\"PeriodicalId\":12929,\"journal\":{\"name\":\"Green Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2022-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1680/jgrma.21.00064\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1680/jgrma.21.00064","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 1

摘要

海洋溢油已被广泛报道,生物修复被认为是一种环境友好的方法来清理这些溢油。然而,保持高生物量的石油降解细菌已被证明是具有挑战性的。在这里,提出了一种能够同时固定细菌和吸油的载体作为解决方案。以三乙酸纤维素粉为原料,通过木棉纤维的乙酰化反应制备了多孔三乙酸纤维素微球。结果表明,在蒸馏水中沉淀12.5% w/v和16.67% w/v时,PCTBs的原油吸收率分别为2.4850±0.1326 g/g和1.9852±0.2343 g/g。PCTBs的重复使用试验表明,经过5次再吸收循环后,PCTBs的吸油率没有降低。成功地将油降解细菌威尼斯不动杆菌固定在PCTBs上,尽管原料纤维具有更大的表面积,但细菌计数与木棉纤维相比没有统计学上的显著差异。扫描电镜分析表明,金针菇通过分泌的外多糖粘附在珠的内外壁上。含有石油降解细菌的多氯联苯有可能同时吸收和降解石油,从而突出了可持续减少溢油的工作替代方案的新颖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modification of kapok cotton fibres into porous cellulose triacetate beads for oil spill remediation efforts
Marine oil spills have been widely reported and bioremediation is proposed to be an environmentally friendly approach to clean these spills. However, maintaining a high biomass of oil-degrading bacteria has been proven challenging. Here, a carrier that enables simultaneous bacterial immobilization and oil absorption is proposed as a solution. Porous cellulose triacetate beads (PCTBs) derived from cellulose triacetate powder was obtained through the acetylation of kapok fibres. This study revealed that PCTBs with both 12.5% and 16.67% w/v precipitated in distilled water showed greater crude oil absorbency of 2.4850 ± 0.1326 g/g and 1.9852 ± 0.2343 g/g, respectively. Reusability tests of PCTBs showed promising results with no reduction in oil absorption after five reabsorption cycles. Successful immobilization of the oil-degrading bacteria, Acinetobacter venetianus on PCTBs was achieved and enumeration of bacteria showed no statistically significant differences compared to those on kapok fibres despite the raw fibres having a larger surface area. The SEM analysis revealed that A. venetianus adhered to the outer and inner walls of the beads through secreted exopolysaccharides. PCTBs with oil-degrading bacteria are potentially able to simultaneously absorb and degrade oil, thus highlighting the novelty of a working alternative to sustainable oil spill mitigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Green Materials
Green Materials Environmental Science-Pollution
CiteScore
3.50
自引率
15.80%
发文量
24
期刊介绍: The focus of Green Materials relates to polymers and materials, with an emphasis on reducing the use of hazardous substances in the design, manufacture and application of products.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信