{"title":"超群上的广义导数和广义指数单项式","authors":"�ywilla Fechner, E. Gselmann, L�szl� Sz�kelyhidi","doi":"10.7494/opmath.2023.43.4.493","DOIUrl":null,"url":null,"abstract":"In one of our former papers \"Endomorphisms of the measure algebra of commutative hypergroups\" we considered exponential monomials on hypergroups and higher order derivations of the corresponding measure algebra. Continuing with this, we are now looking for the connection between the generalized exponential polynomials of a commutative hypergroup and the higher order derivations of the corresponding measure algebra.","PeriodicalId":45563,"journal":{"name":"Opuscula Mathematica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2022-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized derivations and generalized exponential monomials on hypergroups\",\"authors\":\"�ywilla Fechner, E. Gselmann, L�szl� Sz�kelyhidi\",\"doi\":\"10.7494/opmath.2023.43.4.493\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In one of our former papers \\\"Endomorphisms of the measure algebra of commutative hypergroups\\\" we considered exponential monomials on hypergroups and higher order derivations of the corresponding measure algebra. Continuing with this, we are now looking for the connection between the generalized exponential polynomials of a commutative hypergroup and the higher order derivations of the corresponding measure algebra.\",\"PeriodicalId\":45563,\"journal\":{\"name\":\"Opuscula Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2022-09-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Opuscula Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7494/opmath.2023.43.4.493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Opuscula Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7494/opmath.2023.43.4.493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Generalized derivations and generalized exponential monomials on hypergroups
In one of our former papers "Endomorphisms of the measure algebra of commutative hypergroups" we considered exponential monomials on hypergroups and higher order derivations of the corresponding measure algebra. Continuing with this, we are now looking for the connection between the generalized exponential polynomials of a commutative hypergroup and the higher order derivations of the corresponding measure algebra.