Cong Sun, Zhihao Yang, Lei Wang, Yin Zhang, Hongfei Lin, Jian Wang, Liang Yang, Kan Xu, Yijia Zhang
{"title":"从生物医学文献中提取化学-蛋白质相互作用:一种分层递归卷积神经网络方法","authors":"Cong Sun, Zhihao Yang, Lei Wang, Yin Zhang, Hongfei Lin, Jian Wang, Liang Yang, Kan Xu, Yijia Zhang","doi":"10.1504/IJDMB.2019.10021458","DOIUrl":null,"url":null,"abstract":"Mining chemical-protein interactions between chemicals and proteins plays vital roles in biomedical tasks, such as knowledge graph, pharmacology, and clinical research. Although chemical-protein interactions can be manually curated from the biomedical literature, the process is difficult and time-consuming. Hence, it is of great value to automatically obtain the chemical-protein interactions from biomedical literature. Recently, the most popular methods are based on the neural network to avoid complex manual processing. However, the performance is usually limited because of the lengthy and complicated sentences. To address this limitation, we propose a novel model, Hierarchical Recurrent Convolutional Neural Network (HRCNN), to learn hidden semantic and syntactic features from sentence sub-sequences effectively. Our approach achieves an F-score of 65.56% on the CHEMPROT corpus and outperforms the state-of-the-art systems. The experimental results demonstrate that our approach can greatly alleviate the defect of existing methods due to the existence of long sentences.","PeriodicalId":54964,"journal":{"name":"International Journal of Data Mining and Bioinformatics","volume":"1 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2019-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Chemical-protein interaction extraction from biomedical literature: a hierarchical recurrent convolutional neural network method\",\"authors\":\"Cong Sun, Zhihao Yang, Lei Wang, Yin Zhang, Hongfei Lin, Jian Wang, Liang Yang, Kan Xu, Yijia Zhang\",\"doi\":\"10.1504/IJDMB.2019.10021458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mining chemical-protein interactions between chemicals and proteins plays vital roles in biomedical tasks, such as knowledge graph, pharmacology, and clinical research. Although chemical-protein interactions can be manually curated from the biomedical literature, the process is difficult and time-consuming. Hence, it is of great value to automatically obtain the chemical-protein interactions from biomedical literature. Recently, the most popular methods are based on the neural network to avoid complex manual processing. However, the performance is usually limited because of the lengthy and complicated sentences. To address this limitation, we propose a novel model, Hierarchical Recurrent Convolutional Neural Network (HRCNN), to learn hidden semantic and syntactic features from sentence sub-sequences effectively. Our approach achieves an F-score of 65.56% on the CHEMPROT corpus and outperforms the state-of-the-art systems. The experimental results demonstrate that our approach can greatly alleviate the defect of existing methods due to the existence of long sentences.\",\"PeriodicalId\":54964,\"journal\":{\"name\":\"International Journal of Data Mining and Bioinformatics\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2019-05-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Data Mining and Bioinformatics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1504/IJDMB.2019.10021458\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining and Bioinformatics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1504/IJDMB.2019.10021458","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Chemical-protein interaction extraction from biomedical literature: a hierarchical recurrent convolutional neural network method
Mining chemical-protein interactions between chemicals and proteins plays vital roles in biomedical tasks, such as knowledge graph, pharmacology, and clinical research. Although chemical-protein interactions can be manually curated from the biomedical literature, the process is difficult and time-consuming. Hence, it is of great value to automatically obtain the chemical-protein interactions from biomedical literature. Recently, the most popular methods are based on the neural network to avoid complex manual processing. However, the performance is usually limited because of the lengthy and complicated sentences. To address this limitation, we propose a novel model, Hierarchical Recurrent Convolutional Neural Network (HRCNN), to learn hidden semantic and syntactic features from sentence sub-sequences effectively. Our approach achieves an F-score of 65.56% on the CHEMPROT corpus and outperforms the state-of-the-art systems. The experimental results demonstrate that our approach can greatly alleviate the defect of existing methods due to the existence of long sentences.
期刊介绍:
Mining bioinformatics data is an emerging area at the intersection between bioinformatics and data mining. The objective of IJDMB is to facilitate collaboration between data mining researchers and bioinformaticians by presenting cutting edge research topics and methodologies in the area of data mining for bioinformatics. This perspective acknowledges the inter-disciplinary nature of research in data mining and bioinformatics and provides a unified forum for researchers/practitioners/students/policy makers to share the latest research and developments in this fast growing multi-disciplinary research area.