困惑多项式谜题的一个推广

Q4 Social Sciences
Stijn Dierckx
{"title":"困惑多项式谜题的一个推广","authors":"Stijn Dierckx","doi":"10.1080/07468342.2023.2225391","DOIUrl":null,"url":null,"abstract":"Summary Originally published as a puzzle in 2005 [3], the Perplexing Polynomial Puzzle indeed is perplexing: any given polynomial with nonnegative integer coefficients can be completely determined by just two evaluations. In this article, an extension is made to polynomials with arbitrary integer coefficients, by considering a simple translation with such that the result is a new polynomial with only nonnegative integer coefficients on which the original solution can be used. A proof is given that this is indeed always possible, and a method is constructed to determine a suitable k to do so.","PeriodicalId":38710,"journal":{"name":"College Mathematics Journal","volume":"54 1","pages":"299 - 307"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Extension of the Perplexing Polynomial Puzzle\",\"authors\":\"Stijn Dierckx\",\"doi\":\"10.1080/07468342.2023.2225391\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Originally published as a puzzle in 2005 [3], the Perplexing Polynomial Puzzle indeed is perplexing: any given polynomial with nonnegative integer coefficients can be completely determined by just two evaluations. In this article, an extension is made to polynomials with arbitrary integer coefficients, by considering a simple translation with such that the result is a new polynomial with only nonnegative integer coefficients on which the original solution can be used. A proof is given that this is indeed always possible, and a method is constructed to determine a suitable k to do so.\",\"PeriodicalId\":38710,\"journal\":{\"name\":\"College Mathematics Journal\",\"volume\":\"54 1\",\"pages\":\"299 - 307\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"College Mathematics Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/07468342.2023.2225391\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"College Mathematics Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/07468342.2023.2225391","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Social Sciences","Score":null,"Total":0}
引用次数: 0

摘要

摘要最初作为谜题发表于2005年[3],令人困惑的多项式谜题确实令人困惑:任何给定的非负整数系数多项式都可以完全通过两个评估来确定。在本文中,通过考虑一个简单的转换,对具有任意整数系数的多项式进行了扩展,使得结果是一个只有非负整数系数的新多项式,并且可以使用原始解。证明了这确实总是可能的,并构造了一种方法来确定合适的k。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Extension of the Perplexing Polynomial Puzzle
Summary Originally published as a puzzle in 2005 [3], the Perplexing Polynomial Puzzle indeed is perplexing: any given polynomial with nonnegative integer coefficients can be completely determined by just two evaluations. In this article, an extension is made to polynomials with arbitrary integer coefficients, by considering a simple translation with such that the result is a new polynomial with only nonnegative integer coefficients on which the original solution can be used. A proof is given that this is indeed always possible, and a method is constructed to determine a suitable k to do so.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
College Mathematics Journal
College Mathematics Journal Social Sciences-Education
CiteScore
0.20
自引率
0.00%
发文量
52
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信