GRW时空中类空间平均曲率流孤子的不存在性和刚度

Pub Date : 2022-10-24 DOI:10.1007/s10455-022-09879-5
Allan Freitas, Henrique F. de Lima, Márcio S. Santos, Joyce S. Sindeaux
{"title":"GRW时空中类空间平均曲率流孤子的不存在性和刚度","authors":"Allan Freitas,&nbsp;Henrique F. de Lima,&nbsp;Márcio S. Santos,&nbsp;Joyce S. Sindeaux","doi":"10.1007/s10455-022-09879-5","DOIUrl":null,"url":null,"abstract":"<div><p>We study the nonexistence and rigidity of an important class of particular cases of trapped submanifolds, more precisely, <i>n</i>-dimensional spacelike mean curvature flow solitons related to the closed conformal timelike vector field <span>\\(\\mathcal K=f(t)\\partial _t\\)</span> (<span>\\(t\\in I\\subset \\mathbb R\\)</span>) which is globally defined on an <span>\\((n+p+1)\\)</span>-dimensional generalized Robertson–Walker (GRW) spacetime <span>\\(-I\\times _fM^{n+p}\\)</span> with warping function <span>\\(f\\in C^\\infty (I)\\)</span> and Riemannian fiber <span>\\(M^{n+p}\\)</span>, via applications of suitable generalized maximum principles and under certain constraints on <i>f</i> and on the curvatures of <span>\\(M^{n+p}\\)</span>. In codimension 1, we also obtain new Calabi–Bernstein-type results concerning the spacelike mean curvature flow soliton equation in a GRW spacetime.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonexistence and rigidity of spacelike mean curvature flow solitons immersed in a GRW spacetime\",\"authors\":\"Allan Freitas,&nbsp;Henrique F. de Lima,&nbsp;Márcio S. Santos,&nbsp;Joyce S. Sindeaux\",\"doi\":\"10.1007/s10455-022-09879-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the nonexistence and rigidity of an important class of particular cases of trapped submanifolds, more precisely, <i>n</i>-dimensional spacelike mean curvature flow solitons related to the closed conformal timelike vector field <span>\\\\(\\\\mathcal K=f(t)\\\\partial _t\\\\)</span> (<span>\\\\(t\\\\in I\\\\subset \\\\mathbb R\\\\)</span>) which is globally defined on an <span>\\\\((n+p+1)\\\\)</span>-dimensional generalized Robertson–Walker (GRW) spacetime <span>\\\\(-I\\\\times _fM^{n+p}\\\\)</span> with warping function <span>\\\\(f\\\\in C^\\\\infty (I)\\\\)</span> and Riemannian fiber <span>\\\\(M^{n+p}\\\\)</span>, via applications of suitable generalized maximum principles and under certain constraints on <i>f</i> and on the curvatures of <span>\\\\(M^{n+p}\\\\)</span>. In codimension 1, we also obtain new Calabi–Bernstein-type results concerning the spacelike mean curvature flow soliton equation in a GRW spacetime.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10455-022-09879-5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10455-022-09879-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一类重要的捕获子流形特例的不存在性和刚度,与闭共形类时向量场(\mathcal K=f(t)\partial _t)(\(t\ in I\subet \mathbb R\))相关的n维类空平均曲率流孤子,该向量场全局定义在具有翘曲函数(f\ in C^\infty(I)\)和黎曼纤维(M^{n+p}\)的(((n+p+1)\)维广义Robertson–Walker(GRW)时空上,通过适当的广义极大值原理的应用,并在f和\(M^{n+p}\)的曲率的某些约束下。在余维1中,我们还获得了关于GRW时空中类空平均曲率流孤子方程的新的Calabi–Bernstein型结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Nonexistence and rigidity of spacelike mean curvature flow solitons immersed in a GRW spacetime

We study the nonexistence and rigidity of an important class of particular cases of trapped submanifolds, more precisely, n-dimensional spacelike mean curvature flow solitons related to the closed conformal timelike vector field \(\mathcal K=f(t)\partial _t\) (\(t\in I\subset \mathbb R\)) which is globally defined on an \((n+p+1)\)-dimensional generalized Robertson–Walker (GRW) spacetime \(-I\times _fM^{n+p}\) with warping function \(f\in C^\infty (I)\) and Riemannian fiber \(M^{n+p}\), via applications of suitable generalized maximum principles and under certain constraints on f and on the curvatures of \(M^{n+p}\). In codimension 1, we also obtain new Calabi–Bernstein-type results concerning the spacelike mean curvature flow soliton equation in a GRW spacetime.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信