{"title":"减少掺杂剂直接驱动预热","authors":"T.R. Desjardins, C.A. Di Stefano, E.C. Merritt, K.A. Flippo, F.W. Doss","doi":"10.1016/j.hedp.2021.100937","DOIUrl":null,"url":null,"abstract":"<div><p>Preheat in laser-driven experiments can have negative impacts on inertial confinement fusion (ICF) and hydrodynamic experiments. While many groups employ the use of dopants to reduce or block preheat, direct quantification has not previously been explored. We developed a planar platform and a series of ablator targets to measure the electron and x-ray spectra generated by laser-plasma interactions with a direct drive using OMEGA-60. By comparing both thin ablators (75m) and thick ablators (270 m) that were either pure CH, 3% Si doped or 3% I doped, we were able to measure differences in electron and x-ray spectra. In addition, we observed the preheat growth of tracer layers and observed reductions in the growth with different materials. We find that iodine or a thin gold layer is the best at tamping the direct-drive preheat at OMEGA, but that the growth is still significant.</p></div>","PeriodicalId":49267,"journal":{"name":"High Energy Density Physics","volume":"39 ","pages":"Article 100937"},"PeriodicalIF":1.6000,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.hedp.2021.100937","citationCount":"3","resultStr":"{\"title\":\"Reducing direct drive preheat with dopants\",\"authors\":\"T.R. Desjardins, C.A. Di Stefano, E.C. Merritt, K.A. Flippo, F.W. Doss\",\"doi\":\"10.1016/j.hedp.2021.100937\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Preheat in laser-driven experiments can have negative impacts on inertial confinement fusion (ICF) and hydrodynamic experiments. While many groups employ the use of dopants to reduce or block preheat, direct quantification has not previously been explored. We developed a planar platform and a series of ablator targets to measure the electron and x-ray spectra generated by laser-plasma interactions with a direct drive using OMEGA-60. By comparing both thin ablators (75m) and thick ablators (270 m) that were either pure CH, 3% Si doped or 3% I doped, we were able to measure differences in electron and x-ray spectra. In addition, we observed the preheat growth of tracer layers and observed reductions in the growth with different materials. We find that iodine or a thin gold layer is the best at tamping the direct-drive preheat at OMEGA, but that the growth is still significant.</p></div>\",\"PeriodicalId\":49267,\"journal\":{\"name\":\"High Energy Density Physics\",\"volume\":\"39 \",\"pages\":\"Article 100937\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.hedp.2021.100937\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"High Energy Density Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1574181821000148\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Energy Density Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1574181821000148","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Preheat in laser-driven experiments can have negative impacts on inertial confinement fusion (ICF) and hydrodynamic experiments. While many groups employ the use of dopants to reduce or block preheat, direct quantification has not previously been explored. We developed a planar platform and a series of ablator targets to measure the electron and x-ray spectra generated by laser-plasma interactions with a direct drive using OMEGA-60. By comparing both thin ablators (75m) and thick ablators (270 m) that were either pure CH, 3% Si doped or 3% I doped, we were able to measure differences in electron and x-ray spectra. In addition, we observed the preheat growth of tracer layers and observed reductions in the growth with different materials. We find that iodine or a thin gold layer is the best at tamping the direct-drive preheat at OMEGA, but that the growth is still significant.
期刊介绍:
High Energy Density Physics is an international journal covering original experimental and related theoretical work studying the physics of matter and radiation under extreme conditions. ''High energy density'' is understood to be an energy density exceeding about 1011 J/m3. The editors and the publisher are committed to provide this fast-growing community with a dedicated high quality channel to distribute their original findings.
Papers suitable for publication in this journal cover topics in both the warm and hot dense matter regimes, such as laboratory studies relevant to non-LTE kinetics at extreme conditions, planetary interiors, astrophysical phenomena, inertial fusion and includes studies of, for example, material properties and both stable and unstable hydrodynamics. Developments in associated theoretical areas, for example the modelling of strongly coupled, partially degenerate and relativistic plasmas, are also covered.