闭凸集半群中的阶消去律

Pub Date : 2021-09-03 DOI:10.11650/tjm/220603
J. Grzybowski, H. Przybycień
{"title":"闭凸集半群中的阶消去律","authors":"J. Grzybowski, H. Przybycień","doi":"10.11650/tjm/220603","DOIUrl":null,"url":null,"abstract":"In this paper generalize Robinson’s version of an order cancellation law for subsets of vector spaces in which we cancel by unbounded sets. We introduce the notion of weakly narrow sets in normed spaces, study their properties and prove the order cancellation law where the canceled set is weakly narrow. Also we prove the order cancellation law for closed convex subsets of topological vector space where the canceled set has bounded Hausdorff-like distance from its recession cone. We topologically embed the semigroup of closed convex sets sharing a recession cone having bounded Hausdorff-like distance from it into a topological vector space. This result extends Bielawski and Tabor’s generalization of R̊adström theorem. 2010 Mathematics Subject classification. 52A07, 18E20, 46A99.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Order Cancellation Law in a Semigroup of Closed Convex Sets\",\"authors\":\"J. Grzybowski, H. Przybycień\",\"doi\":\"10.11650/tjm/220603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper generalize Robinson’s version of an order cancellation law for subsets of vector spaces in which we cancel by unbounded sets. We introduce the notion of weakly narrow sets in normed spaces, study their properties and prove the order cancellation law where the canceled set is weakly narrow. Also we prove the order cancellation law for closed convex subsets of topological vector space where the canceled set has bounded Hausdorff-like distance from its recession cone. We topologically embed the semigroup of closed convex sets sharing a recession cone having bounded Hausdorff-like distance from it into a topological vector space. This result extends Bielawski and Tabor’s generalization of R̊adström theorem. 2010 Mathematics Subject classification. 52A07, 18E20, 46A99.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.11650/tjm/220603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.11650/tjm/220603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文推广了向量空间子集的阶消去律的Robinson版本,其中我们用无界集消去。我们在赋范空间中引入了弱窄集的概念,研究了它们的性质,并证明了被消去集为弱窄集时的阶消去律。此外,我们还证明了拓扑向量空间的闭凸子集的阶消去律,其中消去集与它的衰退锥具有有界的Hausdorff样距离。我们拓扑地将共享衰退锥的闭凸集的半群嵌入到拓扑向量空间中,该半群与其具有有界Hausdorff样距离。这一结果推广了Bielawski和Tabor对Råadström定理的推广。2010年数学学科分类。52A07,18E20,46A99。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Order Cancellation Law in a Semigroup of Closed Convex Sets
In this paper generalize Robinson’s version of an order cancellation law for subsets of vector spaces in which we cancel by unbounded sets. We introduce the notion of weakly narrow sets in normed spaces, study their properties and prove the order cancellation law where the canceled set is weakly narrow. Also we prove the order cancellation law for closed convex subsets of topological vector space where the canceled set has bounded Hausdorff-like distance from its recession cone. We topologically embed the semigroup of closed convex sets sharing a recession cone having bounded Hausdorff-like distance from it into a topological vector space. This result extends Bielawski and Tabor’s generalization of R̊adström theorem. 2010 Mathematics Subject classification. 52A07, 18E20, 46A99.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信