h原理在流形微积分中的应用

IF 0.5 4区 数学
Apurva Nakade
{"title":"h原理在流形微积分中的应用","authors":"Apurva Nakade","doi":"10.1007/s40062-020-00255-3","DOIUrl":null,"url":null,"abstract":"<p>Manifold calculus is a form of functor calculus that analyzes contravariant functors from some categories of manifolds to topological spaces by providing <i>analytic approximations</i> to them. In this paper, using the technique of the <i>h</i>-principle, we show that for a symplectic manifold <i>N</i>, the analytic approximation to the Lagrangian embeddings functor <span>\\(\\mathrm {Emb}_{\\mathrm {Lag}}(-,N)\\)</span> is the totally real embeddings functor <span>\\(\\mathrm {Emb}_{\\mathrm {TR}}(-,N)\\)</span>. More generally, for subsets <span>\\({\\mathcal {A}}\\)</span> of the <i>m</i>-plane Grassmannian bundle <span>\\({{\\,\\mathrm{{Gr}}\\,}}(m,TN)\\)</span> for which the <i>h</i>-principle holds for <span>\\({\\mathcal {A}}\\)</span>-directed embeddings, we prove the analyticity of the <span>\\({\\mathcal {A}}\\)</span>-directed embeddings functor <span>\\({{\\,\\mathrm{Emb}\\,}}_{{\\mathcal {A}}}(-,N)\\)</span>.</p>","PeriodicalId":636,"journal":{"name":"Journal of Homotopy and Related Structures","volume":"15 2","pages":"309 - 322"},"PeriodicalIF":0.5000,"publicationDate":"2020-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s40062-020-00255-3","citationCount":"0","resultStr":"{\"title\":\"An application of the h-principle to manifold calculus\",\"authors\":\"Apurva Nakade\",\"doi\":\"10.1007/s40062-020-00255-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Manifold calculus is a form of functor calculus that analyzes contravariant functors from some categories of manifolds to topological spaces by providing <i>analytic approximations</i> to them. In this paper, using the technique of the <i>h</i>-principle, we show that for a symplectic manifold <i>N</i>, the analytic approximation to the Lagrangian embeddings functor <span>\\\\(\\\\mathrm {Emb}_{\\\\mathrm {Lag}}(-,N)\\\\)</span> is the totally real embeddings functor <span>\\\\(\\\\mathrm {Emb}_{\\\\mathrm {TR}}(-,N)\\\\)</span>. More generally, for subsets <span>\\\\({\\\\mathcal {A}}\\\\)</span> of the <i>m</i>-plane Grassmannian bundle <span>\\\\({{\\\\,\\\\mathrm{{Gr}}\\\\,}}(m,TN)\\\\)</span> for which the <i>h</i>-principle holds for <span>\\\\({\\\\mathcal {A}}\\\\)</span>-directed embeddings, we prove the analyticity of the <span>\\\\({\\\\mathcal {A}}\\\\)</span>-directed embeddings functor <span>\\\\({{\\\\,\\\\mathrm{Emb}\\\\,}}_{{\\\\mathcal {A}}}(-,N)\\\\)</span>.</p>\",\"PeriodicalId\":636,\"journal\":{\"name\":\"Journal of Homotopy and Related Structures\",\"volume\":\"15 2\",\"pages\":\"309 - 322\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2020-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1007/s40062-020-00255-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Homotopy and Related Structures\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40062-020-00255-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Homotopy and Related Structures","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s40062-020-00255-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

流形演算是函子演算的一种形式,它通过对流形的某些类别的逆变函子给出解析近似来分析它们到拓扑空间。本文利用h原理的技巧,证明了对于辛流形N,拉格朗日嵌入函子\(\mathrm {Emb}_{\mathrm {Lag}}(-,N)\)的解析近似是完全实嵌入函子\(\mathrm {Emb}_{\mathrm {TR}}(-,N)\)。更一般地说,对于h原理适用于\({\mathcal {A}}\)有向嵌入的m平面Grassmannian束\({{\,\mathrm{{Gr}}\,}}(m,TN)\)的子集\({\mathcal {A}}\),我们证明了\({\mathcal {A}}\)有向嵌入函子\({{\,\mathrm{Emb}\,}}_{{\mathcal {A}}}(-,N)\)的可解析性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An application of the h-principle to manifold calculus

Manifold calculus is a form of functor calculus that analyzes contravariant functors from some categories of manifolds to topological spaces by providing analytic approximations to them. In this paper, using the technique of the h-principle, we show that for a symplectic manifold N, the analytic approximation to the Lagrangian embeddings functor \(\mathrm {Emb}_{\mathrm {Lag}}(-,N)\) is the totally real embeddings functor \(\mathrm {Emb}_{\mathrm {TR}}(-,N)\). More generally, for subsets \({\mathcal {A}}\) of the m-plane Grassmannian bundle \({{\,\mathrm{{Gr}}\,}}(m,TN)\) for which the h-principle holds for \({\mathcal {A}}\)-directed embeddings, we prove the analyticity of the \({\mathcal {A}}\)-directed embeddings functor \({{\,\mathrm{Emb}\,}}_{{\mathcal {A}}}(-,N)\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Homotopy and Related Structures
Journal of Homotopy and Related Structures Mathematics-Geometry and Topology
自引率
0.00%
发文量
0
期刊介绍: Journal of Homotopy and Related Structures (JHRS) is a fully refereed international journal dealing with homotopy and related structures of mathematical and physical sciences. Journal of Homotopy and Related Structures is intended to publish papers on Homotopy in the broad sense and its related areas like Homological and homotopical algebra, K-theory, topology of manifolds, geometric and categorical structures, homology theories, topological groups and algebras, stable homotopy theory, group actions, algebraic varieties, category theory, cobordism theory, controlled topology, noncommutative geometry, motivic cohomology, differential topology, algebraic geometry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信