Theresa Gattermann-Itschert, Laura Maria Poreschack, U. W. Thonemann
{"title":"基于机器学习的铁路班组调度优化","authors":"Theresa Gattermann-Itschert, Laura Maria Poreschack, U. W. Thonemann","doi":"10.1287/trsc.2022.1196","DOIUrl":null,"url":null,"abstract":"In crew scheduling, optimization models can become complex when a large number of penalty terms is included in the objective function to take planners’ preferences into account. Planners’ preferences often include nonmonetary aspects for which both the mathematical formulation and the assignment of appropriate penalty costs can be difficult. We address this problem by using machine learning to learn and predict planners’ preferences. We train a random forest classifier on planner feedback regarding duties from their daily work in railway crew scheduling. Our data set contains over 16,000 duties that planners labeled as good or bad. The trained model predicts the probability that a duty is perceived as bad by the planners. We present a novel approach to replace the large construct of penalty terms in a crew scheduling optimization model by a single term that penalizes duties proportionally to the predicted probability of being assessed as unfavorable by a planner. By integrating this probability into the optimization model, we generate schedules that include more duties with preferred characteristics. We increase the mean planner acceptance probability by more than 12% while only facing a marginal increase in costs compared with the original approach that utilizes a set of multiple penalty terms. Our approach combines machine learning to detect complex patterns regarding favorable duty characteristics and optimization to create feasible and cost-efficient crew schedules. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.1196 .","PeriodicalId":51202,"journal":{"name":"Transportation Science","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2023-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using Machine Learning to Include Planners’ Preferences in Railway Crew Scheduling Optimization\",\"authors\":\"Theresa Gattermann-Itschert, Laura Maria Poreschack, U. W. Thonemann\",\"doi\":\"10.1287/trsc.2022.1196\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In crew scheduling, optimization models can become complex when a large number of penalty terms is included in the objective function to take planners’ preferences into account. Planners’ preferences often include nonmonetary aspects for which both the mathematical formulation and the assignment of appropriate penalty costs can be difficult. We address this problem by using machine learning to learn and predict planners’ preferences. We train a random forest classifier on planner feedback regarding duties from their daily work in railway crew scheduling. Our data set contains over 16,000 duties that planners labeled as good or bad. The trained model predicts the probability that a duty is perceived as bad by the planners. We present a novel approach to replace the large construct of penalty terms in a crew scheduling optimization model by a single term that penalizes duties proportionally to the predicted probability of being assessed as unfavorable by a planner. By integrating this probability into the optimization model, we generate schedules that include more duties with preferred characteristics. We increase the mean planner acceptance probability by more than 12% while only facing a marginal increase in costs compared with the original approach that utilizes a set of multiple penalty terms. Our approach combines machine learning to detect complex patterns regarding favorable duty characteristics and optimization to create feasible and cost-efficient crew schedules. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.1196 .\",\"PeriodicalId\":51202,\"journal\":{\"name\":\"Transportation Science\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2023-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transportation Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1287/trsc.2022.1196\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transportation Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1287/trsc.2022.1196","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
Using Machine Learning to Include Planners’ Preferences in Railway Crew Scheduling Optimization
In crew scheduling, optimization models can become complex when a large number of penalty terms is included in the objective function to take planners’ preferences into account. Planners’ preferences often include nonmonetary aspects for which both the mathematical formulation and the assignment of appropriate penalty costs can be difficult. We address this problem by using machine learning to learn and predict planners’ preferences. We train a random forest classifier on planner feedback regarding duties from their daily work in railway crew scheduling. Our data set contains over 16,000 duties that planners labeled as good or bad. The trained model predicts the probability that a duty is perceived as bad by the planners. We present a novel approach to replace the large construct of penalty terms in a crew scheduling optimization model by a single term that penalizes duties proportionally to the predicted probability of being assessed as unfavorable by a planner. By integrating this probability into the optimization model, we generate schedules that include more duties with preferred characteristics. We increase the mean planner acceptance probability by more than 12% while only facing a marginal increase in costs compared with the original approach that utilizes a set of multiple penalty terms. Our approach combines machine learning to detect complex patterns regarding favorable duty characteristics and optimization to create feasible and cost-efficient crew schedules. Supplemental Material: The online appendix is available at https://doi.org/10.1287/trsc.2022.1196 .
期刊介绍:
Transportation Science, published quarterly by INFORMS, is the flagship journal of the Transportation Science and Logistics Society of INFORMS. As the foremost scientific journal in the cross-disciplinary operational research field of transportation analysis, Transportation Science publishes high-quality original contributions and surveys on phenomena associated with all modes of transportation, present and prospective, including mainly all levels of planning, design, economic, operational, and social aspects. Transportation Science focuses primarily on fundamental theories, coupled with observational and experimental studies of transportation and logistics phenomena and processes, mathematical models, advanced methodologies and novel applications in transportation and logistics systems analysis, planning and design. The journal covers a broad range of topics that include vehicular and human traffic flow theories, models and their application to traffic operations and management, strategic, tactical, and operational planning of transportation and logistics systems; performance analysis methods and system design and optimization; theories and analysis methods for network and spatial activity interaction, equilibrium and dynamics; economics of transportation system supply and evaluation; methodologies for analysis of transportation user behavior and the demand for transportation and logistics services.
Transportation Science is international in scope, with editors from nations around the globe. The editorial board reflects the diverse interdisciplinary interests of the transportation science and logistics community, with members that hold primary affiliations in engineering (civil, industrial, and aeronautical), physics, economics, applied mathematics, and business.