关于周期EGARCH过程的平稳性和矩的存在性

IF 0.8 Q3 STATISTICS & PROBABILITY
Ines Lescheb, Walid Slimani
{"title":"关于周期EGARCH过程的平稳性和矩的存在性","authors":"Ines Lescheb, Walid Slimani","doi":"10.1515/mcma-2023-2011","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we will consider periodic EGARCH ⁡ ( p , p ) {\\operatorname{EGARCH}(p,p)} (exponential generalized autoregressive conditional heteroscedastic) processes denoted by PEGARCH ⁡ ( p , p ) {\\operatorname{PEGARCH}(p,p)} . These processes are similar to the standard EGARCH processes, but include seasonally varying coefficients. We examine the probabilistic structure of an EGARCH-type stochastic difference equation with periodically-varying parameters. We propose necessary and sufficient conditions ensuring the existence of stationary solutions (in a periodic sense) based on a Markovian representation. The closed forms of higher moments are, under these conditions, established. Furthermore, the expressions for the Kurtosis coefficient and the autocorrelations of squared observations are derived. The general theory is illustrated by considering special cases such as the symmetric and the asymmetric cases of the second order PEGARCH model.","PeriodicalId":46576,"journal":{"name":"Monte Carlo Methods and Applications","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the stationarity and existence of moments of the periodic EGARCH process\",\"authors\":\"Ines Lescheb, Walid Slimani\",\"doi\":\"10.1515/mcma-2023-2011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we will consider periodic EGARCH ⁡ ( p , p ) {\\\\operatorname{EGARCH}(p,p)} (exponential generalized autoregressive conditional heteroscedastic) processes denoted by PEGARCH ⁡ ( p , p ) {\\\\operatorname{PEGARCH}(p,p)} . These processes are similar to the standard EGARCH processes, but include seasonally varying coefficients. We examine the probabilistic structure of an EGARCH-type stochastic difference equation with periodically-varying parameters. We propose necessary and sufficient conditions ensuring the existence of stationary solutions (in a periodic sense) based on a Markovian representation. The closed forms of higher moments are, under these conditions, established. Furthermore, the expressions for the Kurtosis coefficient and the autocorrelations of squared observations are derived. The general theory is illustrated by considering special cases such as the symmetric and the asymmetric cases of the second order PEGARCH model.\",\"PeriodicalId\":46576,\"journal\":{\"name\":\"Monte Carlo Methods and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Monte Carlo Methods and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/mcma-2023-2011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Monte Carlo Methods and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/mcma-2023-2011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文将考虑周期EGARCH (p,p) {\operatorname{EGARCH}(p,p)}(指数广义自回归条件异方差)过程,表示为PEGARCH (p,p) {\operatorname{PEGARCH}(p,p)}。这些过程类似于标准EGARCH过程,但包括季节变化的系数。研究了一类参数周期性变化的egarch型随机差分方程的概率结构。基于马尔可夫表示,给出了周期平稳解存在的充分必要条件。在这些条件下,高矩的封闭形式就确立了。此外,还推导了峰度系数和平方观测值的自相关表达式。通过考虑二阶PEGARCH模型的对称和非对称情况来说明一般理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the stationarity and existence of moments of the periodic EGARCH process
Abstract In this paper, we will consider periodic EGARCH ⁡ ( p , p ) {\operatorname{EGARCH}(p,p)} (exponential generalized autoregressive conditional heteroscedastic) processes denoted by PEGARCH ⁡ ( p , p ) {\operatorname{PEGARCH}(p,p)} . These processes are similar to the standard EGARCH processes, but include seasonally varying coefficients. We examine the probabilistic structure of an EGARCH-type stochastic difference equation with periodically-varying parameters. We propose necessary and sufficient conditions ensuring the existence of stationary solutions (in a periodic sense) based on a Markovian representation. The closed forms of higher moments are, under these conditions, established. Furthermore, the expressions for the Kurtosis coefficient and the autocorrelations of squared observations are derived. The general theory is illustrated by considering special cases such as the symmetric and the asymmetric cases of the second order PEGARCH model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Monte Carlo Methods and Applications
Monte Carlo Methods and Applications STATISTICS & PROBABILITY-
CiteScore
1.20
自引率
22.20%
发文量
31
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信