在径向磁场作用下,变粘度和壁面性质对弯曲通道中杰弗里流体蠕动的影响

Q3 Engineering
M. Gudekote, D. Baliga, R. Choudhari, Hanumesh Vaidya, K. Prasad, O. Makinde
{"title":"在径向磁场作用下,变粘度和壁面性质对弯曲通道中杰弗里流体蠕动的影响","authors":"M. Gudekote, D. Baliga, R. Choudhari, Hanumesh Vaidya, K. Prasad, O. Makinde","doi":"10.36963/ijtst.2020070203","DOIUrl":null,"url":null,"abstract":"The current investigation attempts to address the peristalsis exhibited by a Jeffrey fluid through channels with curvature and compliant walls. The flow of fluid is exposed to an external magnetic field. Moreover, variation of the viscosity of the fluid with the spatial coordinate is considered. Long wavelength and small values of Reynolds number are considered for the mathematical modeling of the problem under scope. The system of differential equations thus obtained is non-linear, the solution for which is obtained by the method of perturbation for small values of variable viscosity. The authors have provided special emphasis on the influence of pertinent parameters on velocity and trapping phenomenon. The results obtained suggest that as the channel changes from straight to curved, the velocity profile bends away from the center of the channel. Further, the trapped bolus volume is seen to be reducing with decrease in the Hartmann number.","PeriodicalId":36637,"journal":{"name":"International Journal of Thermofluid Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Influence of variable viscosity and wall properties on the peristalsis of Jeffrey fluid in a curved channel with radial magnetic field\",\"authors\":\"M. Gudekote, D. Baliga, R. Choudhari, Hanumesh Vaidya, K. Prasad, O. Makinde\",\"doi\":\"10.36963/ijtst.2020070203\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The current investigation attempts to address the peristalsis exhibited by a Jeffrey fluid through channels with curvature and compliant walls. The flow of fluid is exposed to an external magnetic field. Moreover, variation of the viscosity of the fluid with the spatial coordinate is considered. Long wavelength and small values of Reynolds number are considered for the mathematical modeling of the problem under scope. The system of differential equations thus obtained is non-linear, the solution for which is obtained by the method of perturbation for small values of variable viscosity. The authors have provided special emphasis on the influence of pertinent parameters on velocity and trapping phenomenon. The results obtained suggest that as the channel changes from straight to curved, the velocity profile bends away from the center of the channel. Further, the trapped bolus volume is seen to be reducing with decrease in the Hartmann number.\",\"PeriodicalId\":36637,\"journal\":{\"name\":\"International Journal of Thermofluid Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermofluid Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.36963/ijtst.2020070203\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermofluid Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36963/ijtst.2020070203","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 7

摘要

目前的研究试图解决Jeffrey流体通过具有弯曲和顺应壁的通道所表现出的蠕动。流体流暴露在外部磁场中。此外,还考虑了流体粘度随空间坐标的变化。在一定范围内,对该问题进行数学建模时,考虑了长波长和小雷诺数。由此获得的微分方程组是非线性的,其解是通过对小的可变粘度值的摄动方法获得的。作者特别强调了相关参数对速度和俘获现象的影响。研究结果表明,当河道从直线变为曲线时,流速剖面会远离河道中心弯曲。此外,可以看到捕获的团体积随着哈特曼数的减少而减少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of variable viscosity and wall properties on the peristalsis of Jeffrey fluid in a curved channel with radial magnetic field
The current investigation attempts to address the peristalsis exhibited by a Jeffrey fluid through channels with curvature and compliant walls. The flow of fluid is exposed to an external magnetic field. Moreover, variation of the viscosity of the fluid with the spatial coordinate is considered. Long wavelength and small values of Reynolds number are considered for the mathematical modeling of the problem under scope. The system of differential equations thus obtained is non-linear, the solution for which is obtained by the method of perturbation for small values of variable viscosity. The authors have provided special emphasis on the influence of pertinent parameters on velocity and trapping phenomenon. The results obtained suggest that as the channel changes from straight to curved, the velocity profile bends away from the center of the channel. Further, the trapped bolus volume is seen to be reducing with decrease in the Hartmann number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信