$\mathcal{W}$-代数的三角性

IF 1.8 2区 数学 Q1 MATHEMATICS
T. Creutzig, A. Linshaw
{"title":"$\\mathcal{W}$-代数的三角性","authors":"T. Creutzig, A. Linshaw","doi":"10.4310/CJM.2022.v10.n1.a2","DOIUrl":null,"url":null,"abstract":"We prove the conjecture of Gaiotto and Rapcak that the $Y$-algebras $Y_{L,M,N}[\\psi]$ with one of the parameters $L,M,N$ zero, are simple one-parameter quotients of the universal two-parameter $\\mathcal{W}_{1+\\infty}$-algebra, and satisfy a symmetry known as triality. These $Y$-algebras are defined as the cosets of certain non-principal $\\mathcal{W}$-algebras and $\\mathcal{W}$-superalgebras by their affine vertex subalgebras, and triality is an isomorphism between three such algebras. Special cases of our result provide new and unified proofs of many theorems and open conjectures in the literature on $\\mathcal{W}$-algebras of type $A$. This includes (1) Feigin-Frenkel duality, (2) the coset realization of principal $\\mathcal{W}$-algebras due to Arakawa and us, (3) Feigin and Semikhatov's conjectured triality between subregular $\\mathcal{W}$-algebras, principal $\\mathcal{W}$-superalgebras, and affine vertex superalgebras, (4) the rationality of subregular $\\mathcal{W}$-algebras due to Arakawa and van Ekeren, (5) the identification of Heisenberg cosets of subregular $\\mathcal{W}$-algebras with principal rational $\\mathcal{W}$-algebras that was conjectured in the physics literature over 25 years ago. Finally, we prove the conjectures of Prochazka and Rapcak on the explicit truncation curves realizing the simple $Y$-algebras as $\\mathcal{W}_{1+\\infty}$-quotients, and on their minimal strong generating types.","PeriodicalId":48573,"journal":{"name":"Cambridge Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2020-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Trialities of $\\\\mathcal{W}$-algebras\",\"authors\":\"T. Creutzig, A. Linshaw\",\"doi\":\"10.4310/CJM.2022.v10.n1.a2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove the conjecture of Gaiotto and Rapcak that the $Y$-algebras $Y_{L,M,N}[\\\\psi]$ with one of the parameters $L,M,N$ zero, are simple one-parameter quotients of the universal two-parameter $\\\\mathcal{W}_{1+\\\\infty}$-algebra, and satisfy a symmetry known as triality. These $Y$-algebras are defined as the cosets of certain non-principal $\\\\mathcal{W}$-algebras and $\\\\mathcal{W}$-superalgebras by their affine vertex subalgebras, and triality is an isomorphism between three such algebras. Special cases of our result provide new and unified proofs of many theorems and open conjectures in the literature on $\\\\mathcal{W}$-algebras of type $A$. This includes (1) Feigin-Frenkel duality, (2) the coset realization of principal $\\\\mathcal{W}$-algebras due to Arakawa and us, (3) Feigin and Semikhatov's conjectured triality between subregular $\\\\mathcal{W}$-algebras, principal $\\\\mathcal{W}$-superalgebras, and affine vertex superalgebras, (4) the rationality of subregular $\\\\mathcal{W}$-algebras due to Arakawa and van Ekeren, (5) the identification of Heisenberg cosets of subregular $\\\\mathcal{W}$-algebras with principal rational $\\\\mathcal{W}$-algebras that was conjectured in the physics literature over 25 years ago. Finally, we prove the conjectures of Prochazka and Rapcak on the explicit truncation curves realizing the simple $Y$-algebras as $\\\\mathcal{W}_{1+\\\\infty}$-quotients, and on their minimal strong generating types.\",\"PeriodicalId\":48573,\"journal\":{\"name\":\"Cambridge Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2020-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cambridge Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4310/CJM.2022.v10.n1.a2\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cambridge Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/CJM.2022.v10.n1.a2","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 12

摘要

证明了Gaiotto和Rapcak的猜想 $Y$-代数 $Y_{L,M,N}[\psi]$ 其中一个参数 $L,M,N$ 零,是通用二参数的简单单参数商 $\mathcal{W}_{1+\infty}$-代数,并满足称为三角性的对称。这些 $Y$-代数被定义为某些非主的余集 $\mathcal{W}$-代数和 $\mathcal{W}$-超代数由它们的仿射顶点子代数组成,而三性是三个这样的代数之间的同构。我们的结果的特殊情况为文献中许多定理和开放猜想提供了新的和统一的证明 $\mathcal{W}$-类型的代数 $A$. 这包括(1)Feigin-Frenkel对偶性,(2)本金的协集实现 $\mathcal{W}$(3) Feigin和Semikhatov在次正则间的猜想性 $\mathcal{W}$-代数,主要 $\mathcal{W}$-超代数和仿射顶点超代数;(4)次正则的合理性 $\mathcal{W}$-代数由于Arakawa和van Ekeren,(5)次正则的Heisenberg集的辨识 $\mathcal{W}$-有主有理的代数 $\mathcal{W}$-在25年前的物理文献中被推测出来的代数。最后,我们证明了Prochazka和Rapcak在显式截断曲线上的猜想,实现了简单的 $Y$-代数 $\mathcal{W}_{1+\infty}$-商,以及它们的最小强生成类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trialities of $\mathcal{W}$-algebras
We prove the conjecture of Gaiotto and Rapcak that the $Y$-algebras $Y_{L,M,N}[\psi]$ with one of the parameters $L,M,N$ zero, are simple one-parameter quotients of the universal two-parameter $\mathcal{W}_{1+\infty}$-algebra, and satisfy a symmetry known as triality. These $Y$-algebras are defined as the cosets of certain non-principal $\mathcal{W}$-algebras and $\mathcal{W}$-superalgebras by their affine vertex subalgebras, and triality is an isomorphism between three such algebras. Special cases of our result provide new and unified proofs of many theorems and open conjectures in the literature on $\mathcal{W}$-algebras of type $A$. This includes (1) Feigin-Frenkel duality, (2) the coset realization of principal $\mathcal{W}$-algebras due to Arakawa and us, (3) Feigin and Semikhatov's conjectured triality between subregular $\mathcal{W}$-algebras, principal $\mathcal{W}$-superalgebras, and affine vertex superalgebras, (4) the rationality of subregular $\mathcal{W}$-algebras due to Arakawa and van Ekeren, (5) the identification of Heisenberg cosets of subregular $\mathcal{W}$-algebras with principal rational $\mathcal{W}$-algebras that was conjectured in the physics literature over 25 years ago. Finally, we prove the conjectures of Prochazka and Rapcak on the explicit truncation curves realizing the simple $Y$-algebras as $\mathcal{W}_{1+\infty}$-quotients, and on their minimal strong generating types.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信