{"title":"三角Banach代数的理想模可修性","authors":"E. Nasrabadi","doi":"10.18311/JIMS/2019/21637","DOIUrl":null,"url":null,"abstract":"Let A and B be unital Banach algebras and M be an unital Banach A,B-module. In this paper we define the concept of the (n)-ideal module amenability of Banach algebras and investigate the relation between the (2n-1)-ideal module amenability of triangular Banach algebra Τ = [A M B ] (as a Τ = {[α α] : α ∈u}-module) and (2n - 1)-ideal module amenability of A and B (as an u-module), where u is a (not necessarily unital) Banach algebra such that A, B and M are commutative Banach u-bimodules. Finally, in the case that A = B = M = l 1 (S) and u = l 1 (E), for unital and commutative inverse semigroup S with idempotent set E, we show that T as an u-module is (2n - 1)- ideal module amenable while is not module amenable.","PeriodicalId":38246,"journal":{"name":"Journal of the Indian Mathematical Society","volume":"86 1","pages":"272-285"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ideal Module Amenability of Triangular Banach Algebras\",\"authors\":\"E. Nasrabadi\",\"doi\":\"10.18311/JIMS/2019/21637\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let A and B be unital Banach algebras and M be an unital Banach A,B-module. In this paper we define the concept of the (n)-ideal module amenability of Banach algebras and investigate the relation between the (2n-1)-ideal module amenability of triangular Banach algebra Τ = [A M B ] (as a Τ = {[α α] : α ∈u}-module) and (2n - 1)-ideal module amenability of A and B (as an u-module), where u is a (not necessarily unital) Banach algebra such that A, B and M are commutative Banach u-bimodules. Finally, in the case that A = B = M = l 1 (S) and u = l 1 (E), for unital and commutative inverse semigroup S with idempotent set E, we show that T as an u-module is (2n - 1)- ideal module amenable while is not module amenable.\",\"PeriodicalId\":38246,\"journal\":{\"name\":\"Journal of the Indian Mathematical Society\",\"volume\":\"86 1\",\"pages\":\"272-285\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Indian Mathematical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18311/JIMS/2019/21637\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Indian Mathematical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18311/JIMS/2019/21637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
设A和B是单位Banach代数,M是单位Banch A,B模。本文定义了Banach代数的(n)-理想模可修性的概念,并研究了三角Banach代数Γ=[A M B]的(2n-1)-理想模块可修性(作为α,B和M是交换Banach u—双模。最后,在A=B=M=l1(S)和u=l1(E)的情况下,对于具有幂等集E的单位交换逆半群S,我们证明了作为u模的T是(2n-1)-理想模服从的,而不是模服从的。
Ideal Module Amenability of Triangular Banach Algebras
Let A and B be unital Banach algebras and M be an unital Banach A,B-module. In this paper we define the concept of the (n)-ideal module amenability of Banach algebras and investigate the relation between the (2n-1)-ideal module amenability of triangular Banach algebra Τ = [A M B ] (as a Τ = {[α α] : α ∈u}-module) and (2n - 1)-ideal module amenability of A and B (as an u-module), where u is a (not necessarily unital) Banach algebra such that A, B and M are commutative Banach u-bimodules. Finally, in the case that A = B = M = l 1 (S) and u = l 1 (E), for unital and commutative inverse semigroup S with idempotent set E, we show that T as an u-module is (2n - 1)- ideal module amenable while is not module amenable.
期刊介绍:
The Society began publishing Progress Reports right from 1907 and then the Journal from 1908 (The 1908 and 1909 issues of the Journal are entitled "The Journal of the Indian Mathematical Club"). From 1910 onwards,it is published as its current title ''the Journal of Indian Mathematical Society. The four issues of the Journal constitute a single volume and it is published in two parts: issues 1 and 2 (January to June) as one part and issues 3 and 4 (July to December) as the second part. The four issues of the Mathematics Student (another periodical of the Society) are published as a single yearly volume. Only the original research papers of high quality are published in the Journal of Indian Mathematical Society.