关于多元BV空间的Banach结构

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
A. Brudnyi, Y. Brudnyi
{"title":"关于多元BV空间的Banach结构","authors":"A. Brudnyi, Y. Brudnyi","doi":"10.4064/dm801-7-2019","DOIUrl":null,"url":null,"abstract":"We introduce and study multivariate generalizations of the classical BV spaces of Jordan, F. Riesz and Wiener. The family of the introduced spaces contains or is intimately related to a considerable class of function spaces of modern analysis including BMO, BV, Morrey spaces and those of Sobolev of arbitrary smoothness, Besov and Triebel-Lizorkin spaces. We prove under mild restrictions that the BV spaces of this family are dual and present constructive characterizations of their preduals via atomic decompositions. Moreover, we show that under additional restrictions such a predual space is isometrically isomorphic to the dual space of the separable subspace of the related BV space generated by $C^\\infty$ functions. As a corollary we obtain the \"two stars theorem\" asserting that the second dual of this separable subspace is isometrically isomorphic to the BV space. An essential role in the proofs play approximation properties of the BV spaces under consideration, in particular, weak$^*$ denseness of their subspaces of $C^\\infty$ functions. Our results imply the similar ones (old and new) for the classical function spaces listed above obtained by the unified approach.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On the Banach structure of multivariate BV spaces\",\"authors\":\"A. Brudnyi, Y. Brudnyi\",\"doi\":\"10.4064/dm801-7-2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and study multivariate generalizations of the classical BV spaces of Jordan, F. Riesz and Wiener. The family of the introduced spaces contains or is intimately related to a considerable class of function spaces of modern analysis including BMO, BV, Morrey spaces and those of Sobolev of arbitrary smoothness, Besov and Triebel-Lizorkin spaces. We prove under mild restrictions that the BV spaces of this family are dual and present constructive characterizations of their preduals via atomic decompositions. Moreover, we show that under additional restrictions such a predual space is isometrically isomorphic to the dual space of the separable subspace of the related BV space generated by $C^\\\\infty$ functions. As a corollary we obtain the \\\"two stars theorem\\\" asserting that the second dual of this separable subspace is isometrically isomorphic to the BV space. An essential role in the proofs play approximation properties of the BV spaces under consideration, in particular, weak$^*$ denseness of their subspaces of $C^\\\\infty$ functions. Our results imply the similar ones (old and new) for the classical function spaces listed above obtained by the unified approach.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm801-7-2019\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm801-7-2019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

我们引入并研究了Jordan、F.Riesz和Wiener的经典BV空间的多元推广。引入空间族包含或密切相关于相当一类现代分析的函数空间,包括BMO、BV、Morrey空间和任意光滑的Sobolev、Besov和Triebel-Lizorkin空间。我们在温和的限制下证明了这个族的BV空间是对偶的,并通过原子分解给出了它们的前值的构造性特征。此外,我们证明了在额外的限制下,这样的前对偶空间等距同构于由$C^\infty$函数生成的相关BV空间的可分离子空间的对偶空间。作为推论,我们得到了“双星定理”,断言这个可分离子空间的第二对偶等距同构于BV空间。证明中的一个重要作用是发挥所考虑的BV空间的逼近性质,特别是它们的$C^\infty$函数的子空间的弱$^*$稠密性。我们的结果暗示了通过统一方法获得的上述经典函数空间的相似结果(旧的和新的)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Banach structure of multivariate BV spaces
We introduce and study multivariate generalizations of the classical BV spaces of Jordan, F. Riesz and Wiener. The family of the introduced spaces contains or is intimately related to a considerable class of function spaces of modern analysis including BMO, BV, Morrey spaces and those of Sobolev of arbitrary smoothness, Besov and Triebel-Lizorkin spaces. We prove under mild restrictions that the BV spaces of this family are dual and present constructive characterizations of their preduals via atomic decompositions. Moreover, we show that under additional restrictions such a predual space is isometrically isomorphic to the dual space of the separable subspace of the related BV space generated by $C^\infty$ functions. As a corollary we obtain the "two stars theorem" asserting that the second dual of this separable subspace is isometrically isomorphic to the BV space. An essential role in the proofs play approximation properties of the BV spaces under consideration, in particular, weak$^*$ denseness of their subspaces of $C^\infty$ functions. Our results imply the similar ones (old and new) for the classical function spaces listed above obtained by the unified approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信