{"title":"关于多元BV空间的Banach结构","authors":"A. Brudnyi, Y. Brudnyi","doi":"10.4064/dm801-7-2019","DOIUrl":null,"url":null,"abstract":"We introduce and study multivariate generalizations of the classical BV spaces of Jordan, F. Riesz and Wiener. The family of the introduced spaces contains or is intimately related to a considerable class of function spaces of modern analysis including BMO, BV, Morrey spaces and those of Sobolev of arbitrary smoothness, Besov and Triebel-Lizorkin spaces. We prove under mild restrictions that the BV spaces of this family are dual and present constructive characterizations of their preduals via atomic decompositions. Moreover, we show that under additional restrictions such a predual space is isometrically isomorphic to the dual space of the separable subspace of the related BV space generated by $C^\\infty$ functions. As a corollary we obtain the \"two stars theorem\" asserting that the second dual of this separable subspace is isometrically isomorphic to the BV space. An essential role in the proofs play approximation properties of the BV spaces under consideration, in particular, weak$^*$ denseness of their subspaces of $C^\\infty$ functions. Our results imply the similar ones (old and new) for the classical function spaces listed above obtained by the unified approach.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2018-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"On the Banach structure of multivariate BV spaces\",\"authors\":\"A. Brudnyi, Y. Brudnyi\",\"doi\":\"10.4064/dm801-7-2019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce and study multivariate generalizations of the classical BV spaces of Jordan, F. Riesz and Wiener. The family of the introduced spaces contains or is intimately related to a considerable class of function spaces of modern analysis including BMO, BV, Morrey spaces and those of Sobolev of arbitrary smoothness, Besov and Triebel-Lizorkin spaces. We prove under mild restrictions that the BV spaces of this family are dual and present constructive characterizations of their preduals via atomic decompositions. Moreover, we show that under additional restrictions such a predual space is isometrically isomorphic to the dual space of the separable subspace of the related BV space generated by $C^\\\\infty$ functions. As a corollary we obtain the \\\"two stars theorem\\\" asserting that the second dual of this separable subspace is isometrically isomorphic to the BV space. An essential role in the proofs play approximation properties of the BV spaces under consideration, in particular, weak$^*$ denseness of their subspaces of $C^\\\\infty$ functions. Our results imply the similar ones (old and new) for the classical function spaces listed above obtained by the unified approach.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2018-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4064/dm801-7-2019\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4064/dm801-7-2019","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
We introduce and study multivariate generalizations of the classical BV spaces of Jordan, F. Riesz and Wiener. The family of the introduced spaces contains or is intimately related to a considerable class of function spaces of modern analysis including BMO, BV, Morrey spaces and those of Sobolev of arbitrary smoothness, Besov and Triebel-Lizorkin spaces. We prove under mild restrictions that the BV spaces of this family are dual and present constructive characterizations of their preduals via atomic decompositions. Moreover, we show that under additional restrictions such a predual space is isometrically isomorphic to the dual space of the separable subspace of the related BV space generated by $C^\infty$ functions. As a corollary we obtain the "two stars theorem" asserting that the second dual of this separable subspace is isometrically isomorphic to the BV space. An essential role in the proofs play approximation properties of the BV spaces under consideration, in particular, weak$^*$ denseness of their subspaces of $C^\infty$ functions. Our results imply the similar ones (old and new) for the classical function spaces listed above obtained by the unified approach.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.