SIR流行病模型基本繁殖数的贝叶斯推断

Q3 Medicine
Abdelaziz Qaffou, Hamid El Maroufy, Mokhtar Zbair
{"title":"SIR流行病模型基本繁殖数的贝叶斯推断","authors":"Abdelaziz Qaffou, Hamid El Maroufy, Mokhtar Zbair","doi":"10.1080/24709360.2022.2031721","DOIUrl":null,"url":null,"abstract":"This paper is concerned with the Bayesian estimation for the basic reproduction number , defined as the expected number of new infectious from one infected individual in a fully susceptible population through the entire duration of the infectious period. This parameter is of great importance within epidemic modeling because no epidemic can occur if and an epidemic occurs if . Estimation of , or equivalent parameters in more complex models, can usually be achieved via Markov chain Monte Carlo (MCMC) methods. We will adopt the Bayesian method proposed by Eraker [MCMC analysis of diffusion models with application to finance. J Bus Econ Statist. 2001;19(2):177–191] in the context of financial models. The method consists of augmenting the low-frequency observations by the insertion of a finite number of latent data between two consecutive observations. We develop MCMC methods for inference to explore a posterior distribution of and of missing data. We illustrate the performance of the estimators on both synthetic data and real epidemic from the SIR (Susceptible-Infective-Removed) epidemic model and compare the results with the maximum likelihood (ML) method.","PeriodicalId":37240,"journal":{"name":"Biostatistics and Epidemiology","volume":"6 1","pages":"128 - 143"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bayesian inference of the basic reproduction number for a SIR epidemic model\",\"authors\":\"Abdelaziz Qaffou, Hamid El Maroufy, Mokhtar Zbair\",\"doi\":\"10.1080/24709360.2022.2031721\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper is concerned with the Bayesian estimation for the basic reproduction number , defined as the expected number of new infectious from one infected individual in a fully susceptible population through the entire duration of the infectious period. This parameter is of great importance within epidemic modeling because no epidemic can occur if and an epidemic occurs if . Estimation of , or equivalent parameters in more complex models, can usually be achieved via Markov chain Monte Carlo (MCMC) methods. We will adopt the Bayesian method proposed by Eraker [MCMC analysis of diffusion models with application to finance. J Bus Econ Statist. 2001;19(2):177–191] in the context of financial models. The method consists of augmenting the low-frequency observations by the insertion of a finite number of latent data between two consecutive observations. We develop MCMC methods for inference to explore a posterior distribution of and of missing data. We illustrate the performance of the estimators on both synthetic data and real epidemic from the SIR (Susceptible-Infective-Removed) epidemic model and compare the results with the maximum likelihood (ML) method.\",\"PeriodicalId\":37240,\"journal\":{\"name\":\"Biostatistics and Epidemiology\",\"volume\":\"6 1\",\"pages\":\"128 - 143\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/24709360.2022.2031721\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/24709360.2022.2031721","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 1

摘要

本文涉及基本繁殖数的贝叶斯估计,定义为在整个传染期内,完全易感人群中一个感染者的预期新感染人数。这个参数在流行病建模中非常重要,因为如果不可能发生流行病,如果发生流行病。在更复杂的模型中,参数的估计或等效参数的估计通常可以通过马尔可夫链蒙特卡罗(MCMC)方法来实现。我们将在金融模型的背景下采用Eraker提出的贝叶斯方法[MMC扩散模型分析及其在金融中的应用[J].公共汽车经济统计杂志,2001;19(2):177–191]。该方法包括通过在两个连续观测之间插入有限数量的潜在数据来增强低频观测。我们开发了用于推断的MCMC方法,以探索缺失数据的后验分布。我们说明了SIR(易感感染去除)流行病模型的估计量在合成数据和真实流行病上的性能,并将结果与最大似然(ML)方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian inference of the basic reproduction number for a SIR epidemic model
This paper is concerned with the Bayesian estimation for the basic reproduction number , defined as the expected number of new infectious from one infected individual in a fully susceptible population through the entire duration of the infectious period. This parameter is of great importance within epidemic modeling because no epidemic can occur if and an epidemic occurs if . Estimation of , or equivalent parameters in more complex models, can usually be achieved via Markov chain Monte Carlo (MCMC) methods. We will adopt the Bayesian method proposed by Eraker [MCMC analysis of diffusion models with application to finance. J Bus Econ Statist. 2001;19(2):177–191] in the context of financial models. The method consists of augmenting the low-frequency observations by the insertion of a finite number of latent data between two consecutive observations. We develop MCMC methods for inference to explore a posterior distribution of and of missing data. We illustrate the performance of the estimators on both synthetic data and real epidemic from the SIR (Susceptible-Infective-Removed) epidemic model and compare the results with the maximum likelihood (ML) method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biostatistics and Epidemiology
Biostatistics and Epidemiology Medicine-Health Informatics
CiteScore
1.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信