基于混合算法的工业机器人结构参数辨识

IF 2.3 4区 计算机科学 Q2 Computer Science
Kejin Liu, J. Xia, Fei Zhong, Li Zhang
{"title":"基于混合算法的工业机器人结构参数辨识","authors":"Kejin Liu, J. Xia, Fei Zhong, Li Zhang","doi":"10.1177/17298806221082398","DOIUrl":null,"url":null,"abstract":"To improve the precision and reduce the movement uncertainty of the industrial robot, a novel hybrid optimization algorithm which combines adaptive genetic algorithm with simulated annealing algorithm is proposed in this article. First, for the sake of increasing the global exploring ability of relevant individuals, the adaptive crossover and mutation operator are used in the phase of adaptive genetic algorithm. If the population optimized by adaptive genetic algorithm is trapped in the local optimal area and simultaneously meets the transformation rule, then it is consequently optimized by simulated annealing to enhance the population diversity and hunt for a better solution so that the probability of finding the global optimal solution is greatly increased. Then, corresponding experiments based on single point repeatability are conducted to acquire data and identify the structural parameters of the industrial robot. Moreover, the single point repeatability test and length test are all implemented at the same time to verify the effectiveness of the proposed method. At last, the result reveals that the proposed method is effective to identify the real structural parameters of the industrial robot, thus enormously decreasing the single point repeatability and length deviation at the same time, which extremely increases the precision and decreases the movement uncertainty of the industrial robot.","PeriodicalId":50343,"journal":{"name":"International Journal of Advanced Robotic Systems","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Structural parameters identification for industrial robot using a hybrid algorithm\",\"authors\":\"Kejin Liu, J. Xia, Fei Zhong, Li Zhang\",\"doi\":\"10.1177/17298806221082398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To improve the precision and reduce the movement uncertainty of the industrial robot, a novel hybrid optimization algorithm which combines adaptive genetic algorithm with simulated annealing algorithm is proposed in this article. First, for the sake of increasing the global exploring ability of relevant individuals, the adaptive crossover and mutation operator are used in the phase of adaptive genetic algorithm. If the population optimized by adaptive genetic algorithm is trapped in the local optimal area and simultaneously meets the transformation rule, then it is consequently optimized by simulated annealing to enhance the population diversity and hunt for a better solution so that the probability of finding the global optimal solution is greatly increased. Then, corresponding experiments based on single point repeatability are conducted to acquire data and identify the structural parameters of the industrial robot. Moreover, the single point repeatability test and length test are all implemented at the same time to verify the effectiveness of the proposed method. At last, the result reveals that the proposed method is effective to identify the real structural parameters of the industrial robot, thus enormously decreasing the single point repeatability and length deviation at the same time, which extremely increases the precision and decreases the movement uncertainty of the industrial robot.\",\"PeriodicalId\":50343,\"journal\":{\"name\":\"International Journal of Advanced Robotic Systems\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Advanced Robotic Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1177/17298806221082398\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Advanced Robotic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1177/17298806221082398","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

为了提高工业机器人的运动精度和降低运动不确定性,提出了一种将自适应遗传算法与模拟退火算法相结合的混合优化算法。首先,为了提高相关个体的全局搜索能力,在自适应遗传算法阶段使用了自适应交叉和变异算子;如果通过自适应遗传算法优化的种群陷入局部最优区域,同时满足变换规则,则通过模拟退火算法对其进行优化,增强种群多样性,寻找更好的解,从而大大提高找到全局最优解的概率。然后,基于单点可重复性进行相应的实验,获取数据并识别工业机器人的结构参数。同时进行了单点重复性试验和长度试验,验证了所提方法的有效性。结果表明,该方法能够有效地识别工业机器人的真实结构参数,从而极大地降低了单点重复性和长度偏差,极大地提高了精度,降低了工业机器人的运动不确定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural parameters identification for industrial robot using a hybrid algorithm
To improve the precision and reduce the movement uncertainty of the industrial robot, a novel hybrid optimization algorithm which combines adaptive genetic algorithm with simulated annealing algorithm is proposed in this article. First, for the sake of increasing the global exploring ability of relevant individuals, the adaptive crossover and mutation operator are used in the phase of adaptive genetic algorithm. If the population optimized by adaptive genetic algorithm is trapped in the local optimal area and simultaneously meets the transformation rule, then it is consequently optimized by simulated annealing to enhance the population diversity and hunt for a better solution so that the probability of finding the global optimal solution is greatly increased. Then, corresponding experiments based on single point repeatability are conducted to acquire data and identify the structural parameters of the industrial robot. Moreover, the single point repeatability test and length test are all implemented at the same time to verify the effectiveness of the proposed method. At last, the result reveals that the proposed method is effective to identify the real structural parameters of the industrial robot, thus enormously decreasing the single point repeatability and length deviation at the same time, which extremely increases the precision and decreases the movement uncertainty of the industrial robot.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.50
自引率
0.00%
发文量
65
审稿时长
6 months
期刊介绍: International Journal of Advanced Robotic Systems (IJARS) is a JCR ranked, peer-reviewed open access journal covering the full spectrum of robotics research. The journal is addressed to both practicing professionals and researchers in the field of robotics and its specialty areas. IJARS features fourteen topic areas each headed by a Topic Editor-in-Chief, integrating all aspects of research in robotics under the journal''s domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信