具有时滞的两种群疟疾模型的稳定性和Hopf分支

Q3 Mathematics
E. Agyingi, T. Wiandt, M. Ngwa
{"title":"具有时滞的两种群疟疾模型的稳定性和Hopf分支","authors":"E. Agyingi, T. Wiandt, M. Ngwa","doi":"10.1080/23737867.2017.1296383","DOIUrl":null,"url":null,"abstract":"We present a mathematical model of the transmission dynamics of two species of malaria with time lags. The model is equally applicable to two strains of a malaria species. The reproduction numbers of the two species are obtained and used as threshold parameters to study the stability and bifurcations of the equilibria of the model. We find that the model has a disease free equilibrium, which is a global attractor when the reproduction number of each species is less than one. Further, we observe that the non-disease free equilibrium of the model contains stability switches and Hopf bifurcations take place when the delays exceed the critical values.","PeriodicalId":37222,"journal":{"name":"Letters in Biomathematics","volume":"4 1","pages":"59 - 76"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23737867.2017.1296383","citationCount":"3","resultStr":"{\"title\":\"Stability and Hopf bifurcation of a two species malaria model with time delays\",\"authors\":\"E. Agyingi, T. Wiandt, M. Ngwa\",\"doi\":\"10.1080/23737867.2017.1296383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a mathematical model of the transmission dynamics of two species of malaria with time lags. The model is equally applicable to two strains of a malaria species. The reproduction numbers of the two species are obtained and used as threshold parameters to study the stability and bifurcations of the equilibria of the model. We find that the model has a disease free equilibrium, which is a global attractor when the reproduction number of each species is less than one. Further, we observe that the non-disease free equilibrium of the model contains stability switches and Hopf bifurcations take place when the delays exceed the critical values.\",\"PeriodicalId\":37222,\"journal\":{\"name\":\"Letters in Biomathematics\",\"volume\":\"4 1\",\"pages\":\"59 - 76\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/23737867.2017.1296383\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Biomathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/23737867.2017.1296383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Biomathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23737867.2017.1296383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 3

摘要

我们提出了两种具有时滞的疟疾传播动力学的数学模型。该模型同样适用于一种疟疾的两种菌株。得到了这两个种群的繁殖数,并将其作为阈值参数来研究模型平衡点的稳定性和分岔。我们发现,当每个物种的繁殖数量小于1时,该模型具有无疾病平衡,即全局吸引子。此外,我们观察到该模型的非疾病平衡包含稳定性开关,并且当延迟超过临界值时发生Hopf分岔。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and Hopf bifurcation of a two species malaria model with time delays
We present a mathematical model of the transmission dynamics of two species of malaria with time lags. The model is equally applicable to two strains of a malaria species. The reproduction numbers of the two species are obtained and used as threshold parameters to study the stability and bifurcations of the equilibria of the model. We find that the model has a disease free equilibrium, which is a global attractor when the reproduction number of each species is less than one. Further, we observe that the non-disease free equilibrium of the model contains stability switches and Hopf bifurcations take place when the delays exceed the critical values.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Biomathematics
Letters in Biomathematics Mathematics-Statistics and Probability
CiteScore
2.00
自引率
0.00%
发文量
0
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信