三步幂零李群变形的几个问题

Pub Date : 2019-07-01 DOI:10.32917/HMJ/1564106545
A. Baklouti, M. Boussoffara, I. Kedim
{"title":"三步幂零李群变形的几个问题","authors":"A. Baklouti, M. Boussoffara, I. Kedim","doi":"10.32917/HMJ/1564106545","DOIUrl":null,"url":null,"abstract":"Let G be an exponential solvable Lie group and H a connected Lie subgroup of G. Given any discontinuous group K for the homogeneous space M=G/H and any deformation of K, deformation of discrete subgroups may destroy proper discontinuity of the action on M as H is not compact (except the case \nwhen it is trivial). To interpret this phenomenon in the case when G is a 3-step nilpotent, we provide a layering of Kobayashi's deformation space T (K; G; H) into Hausdorff spaces, which depends upon the dimensions of G-adjoint orbits of the corresponding parameter space. This allows us to establish a Hausdorffness theorem for T (k; G; H).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.32917/HMJ/1564106545","citationCount":"2","resultStr":"{\"title\":\"Some Problems of deformations on three-step nilpotent Lie groups\",\"authors\":\"A. Baklouti, M. Boussoffara, I. Kedim\",\"doi\":\"10.32917/HMJ/1564106545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be an exponential solvable Lie group and H a connected Lie subgroup of G. Given any discontinuous group K for the homogeneous space M=G/H and any deformation of K, deformation of discrete subgroups may destroy proper discontinuity of the action on M as H is not compact (except the case \\nwhen it is trivial). To interpret this phenomenon in the case when G is a 3-step nilpotent, we provide a layering of Kobayashi's deformation space T (K; G; H) into Hausdorff spaces, which depends upon the dimensions of G-adjoint orbits of the corresponding parameter space. This allows us to establish a Hausdorffness theorem for T (k; G; H).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.32917/HMJ/1564106545\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/HMJ/1564106545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/HMJ/1564106545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

设G是指数可解李群,H是G的连通李子群。给定齐次空间M=G/H的任何不连续群K和K的任何变形,离散子群的变形可能破坏M上作用的适当不连续性,因为H不是紧致的(平凡的情况除外)。为了在G是三步幂零的情况下解释这一现象,我们提供了Kobayashi变形空间T(K;G;H)到Hausdorff空间的分层,这取决于相应参数空间的G-伴随轨道的维数。这允许我们建立T(k;G;H)的Hausdorffness定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Some Problems of deformations on three-step nilpotent Lie groups
Let G be an exponential solvable Lie group and H a connected Lie subgroup of G. Given any discontinuous group K for the homogeneous space M=G/H and any deformation of K, deformation of discrete subgroups may destroy proper discontinuity of the action on M as H is not compact (except the case when it is trivial). To interpret this phenomenon in the case when G is a 3-step nilpotent, we provide a layering of Kobayashi's deformation space T (K; G; H) into Hausdorff spaces, which depends upon the dimensions of G-adjoint orbits of the corresponding parameter space. This allows us to establish a Hausdorffness theorem for T (k; G; H).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信