{"title":"三步幂零李群变形的几个问题","authors":"A. Baklouti, M. Boussoffara, I. Kedim","doi":"10.32917/HMJ/1564106545","DOIUrl":null,"url":null,"abstract":"Let G be an exponential solvable Lie group and H a connected Lie subgroup of G. Given any discontinuous group K for the homogeneous space M=G/H and any deformation of K, deformation of discrete subgroups may destroy proper discontinuity of the action on M as H is not compact (except the case \nwhen it is trivial). To interpret this phenomenon in the case when G is a 3-step nilpotent, we provide a layering of Kobayashi's deformation space T (K; G; H) into Hausdorff spaces, which depends upon the dimensions of G-adjoint orbits of the corresponding parameter space. This allows us to establish a Hausdorffness theorem for T (k; G; H).","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.32917/HMJ/1564106545","citationCount":"2","resultStr":"{\"title\":\"Some Problems of deformations on three-step nilpotent Lie groups\",\"authors\":\"A. Baklouti, M. Boussoffara, I. Kedim\",\"doi\":\"10.32917/HMJ/1564106545\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let G be an exponential solvable Lie group and H a connected Lie subgroup of G. Given any discontinuous group K for the homogeneous space M=G/H and any deformation of K, deformation of discrete subgroups may destroy proper discontinuity of the action on M as H is not compact (except the case \\nwhen it is trivial). To interpret this phenomenon in the case when G is a 3-step nilpotent, we provide a layering of Kobayashi's deformation space T (K; G; H) into Hausdorff spaces, which depends upon the dimensions of G-adjoint orbits of the corresponding parameter space. This allows us to establish a Hausdorffness theorem for T (k; G; H).\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.32917/HMJ/1564106545\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.32917/HMJ/1564106545\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.32917/HMJ/1564106545","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Some Problems of deformations on three-step nilpotent Lie groups
Let G be an exponential solvable Lie group and H a connected Lie subgroup of G. Given any discontinuous group K for the homogeneous space M=G/H and any deformation of K, deformation of discrete subgroups may destroy proper discontinuity of the action on M as H is not compact (except the case
when it is trivial). To interpret this phenomenon in the case when G is a 3-step nilpotent, we provide a layering of Kobayashi's deformation space T (K; G; H) into Hausdorff spaces, which depends upon the dimensions of G-adjoint orbits of the corresponding parameter space. This allows us to establish a Hausdorffness theorem for T (k; G; H).