基于改进YOLOv5的鲁棒行人检测与路径预测

Q4 Computer Science
K. Hajari, U. Gawande, Yogesh Golhar
{"title":"基于改进YOLOv5的鲁棒行人检测与路径预测","authors":"K. Hajari, U. Gawande, Yogesh Golhar","doi":"10.5565/rev/elcvia.1538","DOIUrl":null,"url":null,"abstract":"In vision-based surveillance systems, pedestrian recognition and path prediction are critical concerns. Advanced computer vision applications, on the other hand, confront numerous challengesdue to differences in pedestrian postures and scales, backdrops, and occlusion. To tackle these challenges, we present a YOLOv5-based deep learning-based pedestrian recognition and path prediction method. The updated YOLOv5 model was first used to detect pedestrians of various sizes and proportions. The proposed path prediction method is then used to estimate the pedestrian's path based on motion data. The suggested method deals with partial occlusion circumstances to reduce object occlusion-induced progression and loss, and links recognition results with motion attributes. After then, the path prediction algorithm uses motion and directional data to estimate the pedestrian movement's direction. The proposed method outperforms the existing methods, according to the results of the experiments. Finally, we come to a conclusion and look into future study.","PeriodicalId":38711,"journal":{"name":"Electronic Letters on Computer Vision and Image Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust Pedestrian Detection and Path Prediction using Improved YOLOv5\",\"authors\":\"K. Hajari, U. Gawande, Yogesh Golhar\",\"doi\":\"10.5565/rev/elcvia.1538\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In vision-based surveillance systems, pedestrian recognition and path prediction are critical concerns. Advanced computer vision applications, on the other hand, confront numerous challengesdue to differences in pedestrian postures and scales, backdrops, and occlusion. To tackle these challenges, we present a YOLOv5-based deep learning-based pedestrian recognition and path prediction method. The updated YOLOv5 model was first used to detect pedestrians of various sizes and proportions. The proposed path prediction method is then used to estimate the pedestrian's path based on motion data. The suggested method deals with partial occlusion circumstances to reduce object occlusion-induced progression and loss, and links recognition results with motion attributes. After then, the path prediction algorithm uses motion and directional data to estimate the pedestrian movement's direction. The proposed method outperforms the existing methods, according to the results of the experiments. Finally, we come to a conclusion and look into future study.\",\"PeriodicalId\":38711,\"journal\":{\"name\":\"Electronic Letters on Computer Vision and Image Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Letters on Computer Vision and Image Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5565/rev/elcvia.1538\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Letters on Computer Vision and Image Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5565/rev/elcvia.1538","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

摘要

在基于视觉的监控系统中,行人识别和路径预测是关键问题。另一方面,由于行人姿势和尺度、背景和遮挡的差异,先进的计算机视觉应用面临着许多挑战。为了应对这些挑战,我们提出了一种基于yolov5的深度学习行人识别和路径预测方法。更新后的YOLOv5模型首先用于检测各种尺寸和比例的行人。然后利用所提出的路径预测方法,根据运动数据估计行人的路径。该方法处理部分遮挡情况,以减少物体遮挡引起的进展和损失,并将识别结果与运动属性联系起来。然后,路径预测算法利用运动和方向数据来估计行人的运动方向。实验结果表明,该方法优于现有方法。最后,对本文的研究进行了总结和展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Robust Pedestrian Detection and Path Prediction using Improved YOLOv5
In vision-based surveillance systems, pedestrian recognition and path prediction are critical concerns. Advanced computer vision applications, on the other hand, confront numerous challengesdue to differences in pedestrian postures and scales, backdrops, and occlusion. To tackle these challenges, we present a YOLOv5-based deep learning-based pedestrian recognition and path prediction method. The updated YOLOv5 model was first used to detect pedestrians of various sizes and proportions. The proposed path prediction method is then used to estimate the pedestrian's path based on motion data. The suggested method deals with partial occlusion circumstances to reduce object occlusion-induced progression and loss, and links recognition results with motion attributes. After then, the path prediction algorithm uses motion and directional data to estimate the pedestrian movement's direction. The proposed method outperforms the existing methods, according to the results of the experiments. Finally, we come to a conclusion and look into future study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electronic Letters on Computer Vision and Image Analysis
Electronic Letters on Computer Vision and Image Analysis Computer Science-Computer Vision and Pattern Recognition
CiteScore
2.50
自引率
0.00%
发文量
19
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信