{"title":"意大利三个地理区域新冠肺炎疫情的第一和第二阶段:基于贝叶斯变点检测方法的意大利政府措施估计","authors":"M. Manca, F. Russo, V. Georgiev, S. Taddei","doi":"10.18502/jbe.v6i2.4877","DOIUrl":null,"url":null,"abstract":"Background: Based on data from the Ministry of Health, which highlighted the earlier onset of Covid-19 epidemic in Italy, compared with the Europe, we would like to present a statistical elaboration on the impact of measures taken by the Government, during the phase 1 and the start of phase 2. \nMethods: After the implementation of a Bayesian changepoint detection method, we looked for a best fit model, based on the first part of time series data, in order to observe the progress of the data in the presence and absence of the restriction measures introduced. \nResults: Both the implementation of changepoint detection method and the analysis of the curves showed that the decree that marked the start of lockdown has had the effect of slowing down the epidemic by allowing thestart of a plateau between 21 and 25 March. Moreover, the decree that decided the beginning of phase 2 on 4 May did not have a negative impact. \nConclusion: This statistical analysis supports the hypothesis that stringent measures decreased hospitalization, thanks to a slowing down in the evolution of the epidemic compared with what was expected. \n ","PeriodicalId":34310,"journal":{"name":"Journal of Biostatistics and Epidemiology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phases 1 and 2 of Covid-19 Epidemic in the Three Geographical Areas of Italy: An Estimation of Italian Government Measures Based on a Bayesian Changepoint Detection Method\",\"authors\":\"M. Manca, F. Russo, V. Georgiev, S. Taddei\",\"doi\":\"10.18502/jbe.v6i2.4877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Based on data from the Ministry of Health, which highlighted the earlier onset of Covid-19 epidemic in Italy, compared with the Europe, we would like to present a statistical elaboration on the impact of measures taken by the Government, during the phase 1 and the start of phase 2. \\nMethods: After the implementation of a Bayesian changepoint detection method, we looked for a best fit model, based on the first part of time series data, in order to observe the progress of the data in the presence and absence of the restriction measures introduced. \\nResults: Both the implementation of changepoint detection method and the analysis of the curves showed that the decree that marked the start of lockdown has had the effect of slowing down the epidemic by allowing thestart of a plateau between 21 and 25 March. Moreover, the decree that decided the beginning of phase 2 on 4 May did not have a negative impact. \\nConclusion: This statistical analysis supports the hypothesis that stringent measures decreased hospitalization, thanks to a slowing down in the evolution of the epidemic compared with what was expected. \\n \",\"PeriodicalId\":34310,\"journal\":{\"name\":\"Journal of Biostatistics and Epidemiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biostatistics and Epidemiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18502/jbe.v6i2.4877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biostatistics and Epidemiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18502/jbe.v6i2.4877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Phases 1 and 2 of Covid-19 Epidemic in the Three Geographical Areas of Italy: An Estimation of Italian Government Measures Based on a Bayesian Changepoint Detection Method
Background: Based on data from the Ministry of Health, which highlighted the earlier onset of Covid-19 epidemic in Italy, compared with the Europe, we would like to present a statistical elaboration on the impact of measures taken by the Government, during the phase 1 and the start of phase 2.
Methods: After the implementation of a Bayesian changepoint detection method, we looked for a best fit model, based on the first part of time series data, in order to observe the progress of the data in the presence and absence of the restriction measures introduced.
Results: Both the implementation of changepoint detection method and the analysis of the curves showed that the decree that marked the start of lockdown has had the effect of slowing down the epidemic by allowing thestart of a plateau between 21 and 25 March. Moreover, the decree that decided the beginning of phase 2 on 4 May did not have a negative impact.
Conclusion: This statistical analysis supports the hypothesis that stringent measures decreased hospitalization, thanks to a slowing down in the evolution of the epidemic compared with what was expected.