{"title":"四次heckel函数的值分布","authors":"Peng Gao, Liangyi Zhao","doi":"10.2140/moscow.2021.10.167","DOIUrl":null,"url":null,"abstract":"Set $K=\\mathbb{Q}(i)$ and suppose that $c\\in \\mathbb{Z}[i]$ is a square-free algebraic integer with $c\\equiv 1 \\imod{\\langle16\\rangle}$. Let $L(s,\\chi_{c})$ denote the Hecke $L$-function associated with the quartic residue character modulo $c$. For $\\sigma>1/2$, we prove an asymptotic distribution function $F_{\\sigma}$ for the values of the logarithm of \\begin{equation*} L_c(s)= L(s,\\chi_c)L(s,\\overline{\\chi}_{c}), \\end{equation*} as $c$ varies. Moreover, the characteristic function of $F_{\\sigma}$ is expressed explicitly as a product over the prime ideals of $\\mathbb{Z}[i]$.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Value-distribution of quartic Hecke\\nL-functions\",\"authors\":\"Peng Gao, Liangyi Zhao\",\"doi\":\"10.2140/moscow.2021.10.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Set $K=\\\\mathbb{Q}(i)$ and suppose that $c\\\\in \\\\mathbb{Z}[i]$ is a square-free algebraic integer with $c\\\\equiv 1 \\\\imod{\\\\langle16\\\\rangle}$. Let $L(s,\\\\chi_{c})$ denote the Hecke $L$-function associated with the quartic residue character modulo $c$. For $\\\\sigma>1/2$, we prove an asymptotic distribution function $F_{\\\\sigma}$ for the values of the logarithm of \\\\begin{equation*} L_c(s)= L(s,\\\\chi_c)L(s,\\\\overline{\\\\chi}_{c}), \\\\end{equation*} as $c$ varies. Moreover, the characteristic function of $F_{\\\\sigma}$ is expressed explicitly as a product over the prime ideals of $\\\\mathbb{Z}[i]$.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2021.10.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2021.10.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
Set $K=\mathbb{Q}(i)$ and suppose that $c\in \mathbb{Z}[i]$ is a square-free algebraic integer with $c\equiv 1 \imod{\langle16\rangle}$. Let $L(s,\chi_{c})$ denote the Hecke $L$-function associated with the quartic residue character modulo $c$. For $\sigma>1/2$, we prove an asymptotic distribution function $F_{\sigma}$ for the values of the logarithm of \begin{equation*} L_c(s)= L(s,\chi_c)L(s,\overline{\chi}_{c}), \end{equation*} as $c$ varies. Moreover, the characteristic function of $F_{\sigma}$ is expressed explicitly as a product over the prime ideals of $\mathbb{Z}[i]$.