四次heckel函数的值分布

Q4 Mathematics
Peng Gao, Liangyi Zhao
{"title":"四次heckel函数的值分布","authors":"Peng Gao, Liangyi Zhao","doi":"10.2140/moscow.2021.10.167","DOIUrl":null,"url":null,"abstract":"Set $K=\\mathbb{Q}(i)$ and suppose that $c\\in \\mathbb{Z}[i]$ is a square-free algebraic integer with $c\\equiv 1 \\imod{\\langle16\\rangle}$. Let $L(s,\\chi_{c})$ denote the Hecke $L$-function associated with the quartic residue character modulo $c$. For $\\sigma>1/2$, we prove an asymptotic distribution function $F_{\\sigma}$ for the values of the logarithm of \\begin{equation*} L_c(s)= L(s,\\chi_c)L(s,\\overline{\\chi}_{c}), \\end{equation*} as $c$ varies. Moreover, the characteristic function of $F_{\\sigma}$ is expressed explicitly as a product over the prime ideals of $\\mathbb{Z}[i]$.","PeriodicalId":36590,"journal":{"name":"Moscow Journal of Combinatorics and Number Theory","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Value-distribution of quartic Hecke\\nL-functions\",\"authors\":\"Peng Gao, Liangyi Zhao\",\"doi\":\"10.2140/moscow.2021.10.167\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Set $K=\\\\mathbb{Q}(i)$ and suppose that $c\\\\in \\\\mathbb{Z}[i]$ is a square-free algebraic integer with $c\\\\equiv 1 \\\\imod{\\\\langle16\\\\rangle}$. Let $L(s,\\\\chi_{c})$ denote the Hecke $L$-function associated with the quartic residue character modulo $c$. For $\\\\sigma>1/2$, we prove an asymptotic distribution function $F_{\\\\sigma}$ for the values of the logarithm of \\\\begin{equation*} L_c(s)= L(s,\\\\chi_c)L(s,\\\\overline{\\\\chi}_{c}), \\\\end{equation*} as $c$ varies. Moreover, the characteristic function of $F_{\\\\sigma}$ is expressed explicitly as a product over the prime ideals of $\\\\mathbb{Z}[i]$.\",\"PeriodicalId\":36590,\"journal\":{\"name\":\"Moscow Journal of Combinatorics and Number Theory\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Moscow Journal of Combinatorics and Number Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/moscow.2021.10.167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Moscow Journal of Combinatorics and Number Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/moscow.2021.10.167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 1

摘要

设置$K=\mathbb{Q}(i)$,并假设$c\in\mathbb{Z}[i]$是一个无平方代数整数,$c\equiv 1\imod{\langle16\rangle}$。设$L(s,\chi_{c})$表示与四次剩余字符模$c$相关的Hecke$L$函数。对于$\sigma>1/2$,我们证明了当$c$变化时,\ begin{方程*}L_c(s)=L(s,\ chi_c)L(s、\ overline{\chi}_{c}),\ end{方程*}的对数值的渐近分布函数$F_{\sigma}$。此外,$F_{\sigma}$的特征函数被明确表示为$\mathbb{Z}[i]$的素理想上的乘积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Value-distribution of quartic Hecke L-functions
Set $K=\mathbb{Q}(i)$ and suppose that $c\in \mathbb{Z}[i]$ is a square-free algebraic integer with $c\equiv 1 \imod{\langle16\rangle}$. Let $L(s,\chi_{c})$ denote the Hecke $L$-function associated with the quartic residue character modulo $c$. For $\sigma>1/2$, we prove an asymptotic distribution function $F_{\sigma}$ for the values of the logarithm of \begin{equation*} L_c(s)= L(s,\chi_c)L(s,\overline{\chi}_{c}), \end{equation*} as $c$ varies. Moreover, the characteristic function of $F_{\sigma}$ is expressed explicitly as a product over the prime ideals of $\mathbb{Z}[i]$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Moscow Journal of Combinatorics and Number Theory
Moscow Journal of Combinatorics and Number Theory Mathematics-Algebra and Number Theory
CiteScore
0.80
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信