{"title":"一个联合正态二值(probit)模型","authors":"Margaux Delporte, Steffen Fieuws, Geert Molenberghs, Geert Verbeke, Simeon Situma Wanyama, Elpis Hatziagorou, Christiane De Boeck","doi":"10.1111/insr.12532","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In biomedical research, often hierarchical binary and continuous responses need to be jointly modelled. In joint generalised linear mixed models, this can be done with correlated random effects, which allows examining the association structure between the various responses and the evolution of this association over time. In addition, the effect of covariates on all outcomes can be assessed simultaneously. Still, investigating this association is often limited to examining the correlations between the responses on an underlying scale. In addition, the interpretation of this hierarchical model is conditional on the subject-specific random effects. This paper extends this approach and shows how manifest correlations can be computed, that is, the associations between the observed responses. Further, a marginal model is formulated, in which the interpretation is no longer conditional on the random effects. In addition, prediction intervals are derived of one subvector of responses conditional on the other. These methods are applied in a case study of the lung function and allergic bronchopulmonary aspergillosis in patients with cystic fibrosis.</p>\n </div>","PeriodicalId":14479,"journal":{"name":"International Statistical Review","volume":"90 S1","pages":"S37-S51"},"PeriodicalIF":1.7000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A joint normal-binary (probit) model\",\"authors\":\"Margaux Delporte, Steffen Fieuws, Geert Molenberghs, Geert Verbeke, Simeon Situma Wanyama, Elpis Hatziagorou, Christiane De Boeck\",\"doi\":\"10.1111/insr.12532\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In biomedical research, often hierarchical binary and continuous responses need to be jointly modelled. In joint generalised linear mixed models, this can be done with correlated random effects, which allows examining the association structure between the various responses and the evolution of this association over time. In addition, the effect of covariates on all outcomes can be assessed simultaneously. Still, investigating this association is often limited to examining the correlations between the responses on an underlying scale. In addition, the interpretation of this hierarchical model is conditional on the subject-specific random effects. This paper extends this approach and shows how manifest correlations can be computed, that is, the associations between the observed responses. Further, a marginal model is formulated, in which the interpretation is no longer conditional on the random effects. In addition, prediction intervals are derived of one subvector of responses conditional on the other. These methods are applied in a case study of the lung function and allergic bronchopulmonary aspergillosis in patients with cystic fibrosis.</p>\\n </div>\",\"PeriodicalId\":14479,\"journal\":{\"name\":\"International Statistical Review\",\"volume\":\"90 S1\",\"pages\":\"S37-S51\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Statistical Review\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/insr.12532\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Statistical Review","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/insr.12532","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
In biomedical research, often hierarchical binary and continuous responses need to be jointly modelled. In joint generalised linear mixed models, this can be done with correlated random effects, which allows examining the association structure between the various responses and the evolution of this association over time. In addition, the effect of covariates on all outcomes can be assessed simultaneously. Still, investigating this association is often limited to examining the correlations between the responses on an underlying scale. In addition, the interpretation of this hierarchical model is conditional on the subject-specific random effects. This paper extends this approach and shows how manifest correlations can be computed, that is, the associations between the observed responses. Further, a marginal model is formulated, in which the interpretation is no longer conditional on the random effects. In addition, prediction intervals are derived of one subvector of responses conditional on the other. These methods are applied in a case study of the lung function and allergic bronchopulmonary aspergillosis in patients with cystic fibrosis.
期刊介绍:
International Statistical Review is the flagship journal of the International Statistical Institute (ISI) and of its family of Associations. It publishes papers of broad and general interest in statistics and probability. The term Review is to be interpreted broadly. The types of papers that are suitable for publication include (but are not limited to) the following: reviews/surveys of significant developments in theory, methodology, statistical computing and graphics, statistical education, and application areas; tutorials on important topics; expository papers on emerging areas of research or application; papers describing new developments and/or challenges in relevant areas; papers addressing foundational issues; papers on the history of statistics and probability; white papers on topics of importance to the profession or society; and historical assessment of seminal papers in the field and their impact.