不适定问题正则化奇异值截断阈值的确定

IF 1.1 4区 工程技术 Q3 ENGINEERING, MULTIDISCIPLINARY
Shuyong Duan, Bo Yang, F. Wang, Guirong Liu
{"title":"不适定问题正则化奇异值截断阈值的确定","authors":"Shuyong Duan, Bo Yang, F. Wang, Guirong Liu","doi":"10.1080/17415977.2020.1832090","DOIUrl":null,"url":null,"abstract":"Appropriate regularization parameter specification is the linchpin for solving ill-posed inverse problems when regularization method is applied. This paper presents a novel technique to determine cut off singular values in the truncated singular value decomposition (TSVD) methods. Simple formulae are presented to calculate the index number of the singular value, beyond which all the smaller singular values and the corresponding vectors are truncated. The determination method of optimal truncation threshold is firstly theoretically inferred. Two-dimensional inverse problems processing Radon transform are then exemplified. Formulae to solve the problem with insufficient image resolution and projection angle number are derived by the currently proposed method. The results show that accuracy of the current method is similar to that of TSVD but with much superior efficiency. On the other hand, insufficiency in input data affects the output accuracy of the inverse solution, a least square method can be engaged to establish formulae calculating the truncation threshold. For an insufficient set of input data, the percentage difference between inversely reconstructed signal and TSVD reconstructed signal is about 3%. The current formulae offer reliable and more efficient approach to calculate the truncation threshold when TSVD is applied to solve inverse problems with known system characteristics.","PeriodicalId":54926,"journal":{"name":"Inverse Problems in Science and Engineering","volume":"29 1","pages":"1127 - 1157"},"PeriodicalIF":1.1000,"publicationDate":"2021-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/17415977.2020.1832090","citationCount":"4","resultStr":"{\"title\":\"Determination of singular value truncation threshold for regularization in ill-posed problems\",\"authors\":\"Shuyong Duan, Bo Yang, F. Wang, Guirong Liu\",\"doi\":\"10.1080/17415977.2020.1832090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Appropriate regularization parameter specification is the linchpin for solving ill-posed inverse problems when regularization method is applied. This paper presents a novel technique to determine cut off singular values in the truncated singular value decomposition (TSVD) methods. Simple formulae are presented to calculate the index number of the singular value, beyond which all the smaller singular values and the corresponding vectors are truncated. The determination method of optimal truncation threshold is firstly theoretically inferred. Two-dimensional inverse problems processing Radon transform are then exemplified. Formulae to solve the problem with insufficient image resolution and projection angle number are derived by the currently proposed method. The results show that accuracy of the current method is similar to that of TSVD but with much superior efficiency. On the other hand, insufficiency in input data affects the output accuracy of the inverse solution, a least square method can be engaged to establish formulae calculating the truncation threshold. For an insufficient set of input data, the percentage difference between inversely reconstructed signal and TSVD reconstructed signal is about 3%. The current formulae offer reliable and more efficient approach to calculate the truncation threshold when TSVD is applied to solve inverse problems with known system characteristics.\",\"PeriodicalId\":54926,\"journal\":{\"name\":\"Inverse Problems in Science and Engineering\",\"volume\":\"29 1\",\"pages\":\"1127 - 1157\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1080/17415977.2020.1832090\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inverse Problems in Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/17415977.2020.1832090\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems in Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/17415977.2020.1832090","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 4

摘要

当正则化方法被应用时,适当的正则化参数规范是求解不适定逆问题的关键。本文提出了一种在截断奇异值分解(TSVD)方法中确定截断奇异值的新技术。给出了一个简单的公式来计算奇异值的索引号,超过该索引号,所有较小的奇异值和相应的向量都会被截断。首先从理论上推导了最优截断阈值的确定方法。然后举例说明了处理Radon变换的二维反问题。根据目前提出的方法,推导出了解决图像分辨率和投影角数不足问题的公式。结果表明,当前方法的精度与TSVD相似,但具有更高的效率。另一方面,输入数据的不足影响了逆解的输出精度,可以采用最小二乘法建立截断阈值的计算公式。对于一组不充分的输入数据,反向重建信号和TSVD重建信号之间的百分比差约为3%。当TSVD应用于求解具有已知系统特性的逆问题时,现有的公式为计算截断阈值提供了可靠而有效的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Determination of singular value truncation threshold for regularization in ill-posed problems
Appropriate regularization parameter specification is the linchpin for solving ill-posed inverse problems when regularization method is applied. This paper presents a novel technique to determine cut off singular values in the truncated singular value decomposition (TSVD) methods. Simple formulae are presented to calculate the index number of the singular value, beyond which all the smaller singular values and the corresponding vectors are truncated. The determination method of optimal truncation threshold is firstly theoretically inferred. Two-dimensional inverse problems processing Radon transform are then exemplified. Formulae to solve the problem with insufficient image resolution and projection angle number are derived by the currently proposed method. The results show that accuracy of the current method is similar to that of TSVD but with much superior efficiency. On the other hand, insufficiency in input data affects the output accuracy of the inverse solution, a least square method can be engaged to establish formulae calculating the truncation threshold. For an insufficient set of input data, the percentage difference between inversely reconstructed signal and TSVD reconstructed signal is about 3%. The current formulae offer reliable and more efficient approach to calculate the truncation threshold when TSVD is applied to solve inverse problems with known system characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inverse Problems in Science and Engineering
Inverse Problems in Science and Engineering 工程技术-工程:综合
自引率
0.00%
发文量
0
审稿时长
6 months
期刊介绍: Inverse Problems in Science and Engineering provides an international forum for the discussion of conceptual ideas and methods for the practical solution of applied inverse problems. The Journal aims to address the needs of practising engineers, mathematicians and researchers and to serve as a focal point for the quick communication of ideas. Papers must provide several non-trivial examples of practical applications. Multidisciplinary applied papers are particularly welcome. Topics include: -Shape design: determination of shape, size and location of domains (shape identification or optimization in acoustics, aerodynamics, electromagnets, etc; detection of voids and cracks). -Material properties: determination of physical properties of media. -Boundary values/initial values: identification of the proper boundary conditions and/or initial conditions (tomographic problems involving X-rays, ultrasonics, optics, thermal sources etc; determination of thermal, stress/strain, electromagnetic, fluid flow etc. boundary conditions on inaccessible boundaries; determination of initial chemical composition, etc.). -Forces and sources: determination of the unknown external forces or inputs acting on a domain (structural dynamic modification and reconstruction) and internal concentrated and distributed sources/sinks (sources of heat, noise, electromagnetic radiation, etc.). -Governing equations: inference of analytic forms of partial and/or integral equations governing the variation of measured field quantities.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信