Konrad N. Urban, Heejong Bong, Josue Orellana, Robert E. Kass
{"title":"振荡神经回路:相位、振幅和复正态分布","authors":"Konrad N. Urban, Heejong Bong, Josue Orellana, Robert E. Kass","doi":"10.1002/cjs.11790","DOIUrl":null,"url":null,"abstract":"<p>Multiple oscillating time series are typically analyzed in the frequency domain, where coherence is usually said to represent the magnitude of the correlation between two signals at a particular frequency. The correlation being referenced is complex-valued and is similar to the real-valued Pearson correlation in some ways but not others. We discuss the dependence among oscillating series in the context of the multivariate complex normal distribution, which plays a role for vectors of complex random variables analogous to the usual multivariate normal distribution for vectors of real-valued random variables. We emphasize special cases that are valuable for the neural data we are interested in and provide new variations on existing results. We then introduce a complex latent variable model for narrowly band-pass-filtered signals at some frequency, and show that the resulting maximum likelihood estimate produces a latent coherence that is equivalent to the magnitude of the complex canonical correlation at the given frequency. We also derive an equivalence between partial coherence and the magnitude of complex partial correlation, at a given frequency. Our theoretical framework leads to interpretable results for an interesting multivariate dataset from the Allen Institute for Brain Science.</p>","PeriodicalId":55281,"journal":{"name":"Canadian Journal of Statistics-Revue Canadienne De Statistique","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11790","citationCount":"2","resultStr":"{\"title\":\"Oscillating neural circuits: Phase, amplitude, and the complex normal distribution\",\"authors\":\"Konrad N. Urban, Heejong Bong, Josue Orellana, Robert E. Kass\",\"doi\":\"10.1002/cjs.11790\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Multiple oscillating time series are typically analyzed in the frequency domain, where coherence is usually said to represent the magnitude of the correlation between two signals at a particular frequency. The correlation being referenced is complex-valued and is similar to the real-valued Pearson correlation in some ways but not others. We discuss the dependence among oscillating series in the context of the multivariate complex normal distribution, which plays a role for vectors of complex random variables analogous to the usual multivariate normal distribution for vectors of real-valued random variables. We emphasize special cases that are valuable for the neural data we are interested in and provide new variations on existing results. We then introduce a complex latent variable model for narrowly band-pass-filtered signals at some frequency, and show that the resulting maximum likelihood estimate produces a latent coherence that is equivalent to the magnitude of the complex canonical correlation at the given frequency. We also derive an equivalence between partial coherence and the magnitude of complex partial correlation, at a given frequency. Our theoretical framework leads to interpretable results for an interesting multivariate dataset from the Allen Institute for Brain Science.</p>\",\"PeriodicalId\":55281,\"journal\":{\"name\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2023-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cjs.11790\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Canadian Journal of Statistics-Revue Canadienne De Statistique\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11790\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Canadian Journal of Statistics-Revue Canadienne De Statistique","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cjs.11790","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Oscillating neural circuits: Phase, amplitude, and the complex normal distribution
Multiple oscillating time series are typically analyzed in the frequency domain, where coherence is usually said to represent the magnitude of the correlation between two signals at a particular frequency. The correlation being referenced is complex-valued and is similar to the real-valued Pearson correlation in some ways but not others. We discuss the dependence among oscillating series in the context of the multivariate complex normal distribution, which plays a role for vectors of complex random variables analogous to the usual multivariate normal distribution for vectors of real-valued random variables. We emphasize special cases that are valuable for the neural data we are interested in and provide new variations on existing results. We then introduce a complex latent variable model for narrowly band-pass-filtered signals at some frequency, and show that the resulting maximum likelihood estimate produces a latent coherence that is equivalent to the magnitude of the complex canonical correlation at the given frequency. We also derive an equivalence between partial coherence and the magnitude of complex partial correlation, at a given frequency. Our theoretical framework leads to interpretable results for an interesting multivariate dataset from the Allen Institute for Brain Science.
期刊介绍:
The Canadian Journal of Statistics is the official journal of the Statistical Society of Canada. It has a reputation internationally as an excellent journal. The editorial board is comprised of statistical scientists with applied, computational, methodological, theoretical and probabilistic interests. Their role is to ensure that the journal continues to provide an international forum for the discipline of Statistics.
The journal seeks papers making broad points of interest to many readers, whereas papers making important points of more specific interest are better placed in more specialized journals. The levels of innovation and impact are key in the evaluation of submitted manuscripts.