{"title":"基于标准穿透试验的概率液化分析","authors":"F. Kamel, S. Badreddine","doi":"10.2478/sgem-2022-0009","DOIUrl":null,"url":null,"abstract":"Abstract The Youd etal liquefaction resistance curves developed in 2001 to characterize the cyclic resistance of soil based on SPT test are the most used in the context of the Seed and Idriss simplified procedure as a deterministic model. These curves were developed from a modified database of Seed etal. in 1985 with the assumption that the actual peak shear stress (τd) induced at depth h is always less than that predicted by the simplified procedure (τr) of Seed and Idriss (rd= τd/τr<1). By using a suite of equivalent linear site response analyses to adjust the dynamic and the simplified shear stress at depth h, Filali and Sbartai showed in 2017 that the dynamic peak shear stress for some earthquakes is greater than the simplified peak shear stress (rd>1). As in this case, the assumption of the simplified procedure is not verified, Filali and Sbartai have proposed a corrector factor (RC) in the range where rd>1 to adjust the deformable and rigid body. In this paper, we will present a probabilistic study for the evaluation of the liquefaction potential using a database based on SPT measurement compiled after the Chi-Chi Taiwan earthquake, in which the cyclic stress ratio is evaluated using the proposed corrector factor. The objective of this study is to present a probabilistic shape of the cyclic resistance ratio (CRR) curves based on the original simplified method of Seed and Idriss and the corrected version and a new formulation for computing the probability of liquefaction.","PeriodicalId":44626,"journal":{"name":"Studia Geotechnica et Mechanica","volume":"44 1","pages":"162 - 174"},"PeriodicalIF":0.7000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Probabilistic Liquefaction Analysis Using Standard Penetration Test\",\"authors\":\"F. Kamel, S. Badreddine\",\"doi\":\"10.2478/sgem-2022-0009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract The Youd etal liquefaction resistance curves developed in 2001 to characterize the cyclic resistance of soil based on SPT test are the most used in the context of the Seed and Idriss simplified procedure as a deterministic model. These curves were developed from a modified database of Seed etal. in 1985 with the assumption that the actual peak shear stress (τd) induced at depth h is always less than that predicted by the simplified procedure (τr) of Seed and Idriss (rd= τd/τr<1). By using a suite of equivalent linear site response analyses to adjust the dynamic and the simplified shear stress at depth h, Filali and Sbartai showed in 2017 that the dynamic peak shear stress for some earthquakes is greater than the simplified peak shear stress (rd>1). As in this case, the assumption of the simplified procedure is not verified, Filali and Sbartai have proposed a corrector factor (RC) in the range where rd>1 to adjust the deformable and rigid body. In this paper, we will present a probabilistic study for the evaluation of the liquefaction potential using a database based on SPT measurement compiled after the Chi-Chi Taiwan earthquake, in which the cyclic stress ratio is evaluated using the proposed corrector factor. The objective of this study is to present a probabilistic shape of the cyclic resistance ratio (CRR) curves based on the original simplified method of Seed and Idriss and the corrected version and a new formulation for computing the probability of liquefaction.\",\"PeriodicalId\":44626,\"journal\":{\"name\":\"Studia Geotechnica et Mechanica\",\"volume\":\"44 1\",\"pages\":\"162 - 174\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Geotechnica et Mechanica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/sgem-2022-0009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Geotechnica et Mechanica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/sgem-2022-0009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MECHANICS","Score":null,"Total":0}
Probabilistic Liquefaction Analysis Using Standard Penetration Test
Abstract The Youd etal liquefaction resistance curves developed in 2001 to characterize the cyclic resistance of soil based on SPT test are the most used in the context of the Seed and Idriss simplified procedure as a deterministic model. These curves were developed from a modified database of Seed etal. in 1985 with the assumption that the actual peak shear stress (τd) induced at depth h is always less than that predicted by the simplified procedure (τr) of Seed and Idriss (rd= τd/τr<1). By using a suite of equivalent linear site response analyses to adjust the dynamic and the simplified shear stress at depth h, Filali and Sbartai showed in 2017 that the dynamic peak shear stress for some earthquakes is greater than the simplified peak shear stress (rd>1). As in this case, the assumption of the simplified procedure is not verified, Filali and Sbartai have proposed a corrector factor (RC) in the range where rd>1 to adjust the deformable and rigid body. In this paper, we will present a probabilistic study for the evaluation of the liquefaction potential using a database based on SPT measurement compiled after the Chi-Chi Taiwan earthquake, in which the cyclic stress ratio is evaluated using the proposed corrector factor. The objective of this study is to present a probabilistic shape of the cyclic resistance ratio (CRR) curves based on the original simplified method of Seed and Idriss and the corrected version and a new formulation for computing the probability of liquefaction.
期刊介绍:
An international journal ‘Studia Geotechnica et Mechanica’ covers new developments in the broad areas of geomechanics as well as structural mechanics. The journal welcomes contributions dealing with original theoretical, numerical as well as experimental work. The following topics are of special interest: Constitutive relations for geomaterials (soils, rocks, concrete, etc.) Modeling of mechanical behaviour of heterogeneous materials at different scales Analysis of coupled thermo-hydro-chemo-mechanical problems Modeling of instabilities and localized deformation Experimental investigations of material properties at different scales Numerical algorithms: formulation and performance Application of numerical techniques to analysis of problems involving foundations, underground structures, slopes and embankment Risk and reliability analysis Analysis of concrete and masonry structures Modeling of case histories