具有流入、流出的线性化三维Euler方程

IF 1.5 3区 数学 Q1 MATHEMATICS
G. Gie, J. Kelliher, A. Mazzucato
{"title":"具有流入、流出的线性化三维Euler方程","authors":"G. Gie, J. Kelliher, A. Mazzucato","doi":"10.57262/ade028-0506-373","DOIUrl":null,"url":null,"abstract":"In 1983, Antontsev, Kazhikhov, and Monakhov published a proof of the existence and uniqueness of solutions to the 3D Euler equations in which on certain inflow boundary components fluid is forced into the domain while on other outflow components fluid is drawn out of the domain. A key tool they used was the linearized Euler equations in vorticity form. We extend their result on the linearized problem to multiply connected domains and establish compatibility conditions on the initial data that allow higher regularity solutions.","PeriodicalId":53312,"journal":{"name":"Advances in Differential Equations","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2022-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The linearized 3d Euler equations with inflow, outflow\",\"authors\":\"G. Gie, J. Kelliher, A. Mazzucato\",\"doi\":\"10.57262/ade028-0506-373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 1983, Antontsev, Kazhikhov, and Monakhov published a proof of the existence and uniqueness of solutions to the 3D Euler equations in which on certain inflow boundary components fluid is forced into the domain while on other outflow components fluid is drawn out of the domain. A key tool they used was the linearized Euler equations in vorticity form. We extend their result on the linearized problem to multiply connected domains and establish compatibility conditions on the initial data that allow higher regularity solutions.\",\"PeriodicalId\":53312,\"journal\":{\"name\":\"Advances in Differential Equations\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-03-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.57262/ade028-0506-373\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.57262/ade028-0506-373","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

摘要

1983年,Antontsev、Kazhikhov和Monakhov发表了3D Euler方程解的存在性和唯一性的证明,其中在某些流入边界分量上,流体被强迫进入域,而在其他流出分量上,液体被拉出域。他们使用的一个关键工具是涡量形式的线性化欧拉方程。我们将他们关于线性化问题的结果扩展到多个连通域,并在初始数据上建立兼容性条件,以允许更高的正则性解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The linearized 3d Euler equations with inflow, outflow
In 1983, Antontsev, Kazhikhov, and Monakhov published a proof of the existence and uniqueness of solutions to the 3D Euler equations in which on certain inflow boundary components fluid is forced into the domain while on other outflow components fluid is drawn out of the domain. A key tool they used was the linearized Euler equations in vorticity form. We extend their result on the linearized problem to multiply connected domains and establish compatibility conditions on the initial data that allow higher regularity solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Differential Equations
Advances in Differential Equations MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
1.90
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊介绍: Advances in Differential Equations will publish carefully selected, longer research papers on mathematical aspects of differential equations and on applications of the mathematical theory to issues arising in the sciences and in engineering. Papers submitted to this journal should be correct, new and non-trivial. Emphasis will be placed on papers that are judged to be specially timely, and of interest to a substantial number of mathematicians working in this area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信