{"title":"基于双域DNA链位移的互补体逻辑运算模型","authors":"Wendan Xie, Changjun Zhou, Hui Lv, Qiang Zhang","doi":"10.3233/FI-2019-1767","DOIUrl":null,"url":null,"abstract":"DNA strand replacement technology has the advantages of simple operation which makes it becomes a common method of DNA computing. A four bit binary number Complementer based on two-domain DNA strand displacement is proposed in this paper. It implements the function of converting binary code into complement code. Simulation experiment based on Visual DSD software is carried out. The simulation results show the correctness and feasibility of the logic model of the Complementer, and it makes useful exploration for further expanding the application of molecular logic circuit.","PeriodicalId":56310,"journal":{"name":"Fundamenta Informaticae","volume":null,"pages":null},"PeriodicalIF":0.4000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3233/FI-2019-1767","citationCount":"1","resultStr":"{\"title\":\"Logic Operation Model of the Complementer Based on Two-domain DNA Strand Displacement\",\"authors\":\"Wendan Xie, Changjun Zhou, Hui Lv, Qiang Zhang\",\"doi\":\"10.3233/FI-2019-1767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"DNA strand replacement technology has the advantages of simple operation which makes it becomes a common method of DNA computing. A four bit binary number Complementer based on two-domain DNA strand displacement is proposed in this paper. It implements the function of converting binary code into complement code. Simulation experiment based on Visual DSD software is carried out. The simulation results show the correctness and feasibility of the logic model of the Complementer, and it makes useful exploration for further expanding the application of molecular logic circuit.\",\"PeriodicalId\":56310,\"journal\":{\"name\":\"Fundamenta Informaticae\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.3233/FI-2019-1767\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fundamenta Informaticae\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/FI-2019-1767\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, SOFTWARE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fundamenta Informaticae","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/FI-2019-1767","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
Logic Operation Model of the Complementer Based on Two-domain DNA Strand Displacement
DNA strand replacement technology has the advantages of simple operation which makes it becomes a common method of DNA computing. A four bit binary number Complementer based on two-domain DNA strand displacement is proposed in this paper. It implements the function of converting binary code into complement code. Simulation experiment based on Visual DSD software is carried out. The simulation results show the correctness and feasibility of the logic model of the Complementer, and it makes useful exploration for further expanding the application of molecular logic circuit.
期刊介绍:
Fundamenta Informaticae is an international journal publishing original research results in all areas of theoretical computer science. Papers are encouraged contributing:
solutions by mathematical methods of problems emerging in computer science
solutions of mathematical problems inspired by computer science.
Topics of interest include (but are not restricted to):
theory of computing,
complexity theory,
algorithms and data structures,
computational aspects of combinatorics and graph theory,
programming language theory,
theoretical aspects of programming languages,
computer-aided verification,
computer science logic,
database theory,
logic programming,
automated deduction,
formal languages and automata theory,
concurrency and distributed computing,
cryptography and security,
theoretical issues in artificial intelligence,
machine learning,
pattern recognition,
algorithmic game theory,
bioinformatics and computational biology,
quantum computing,
probabilistic methods,
algebraic and categorical methods.