与Sp(n,C)退化主级数的K型相关的特殊函数

IF 0.5 4区 数学 Q3 MATHEMATICS
Gr'egory Mendousse
{"title":"与Sp(n,C)退化主级数的K型相关的特殊函数","authors":"Gr'egory Mendousse","doi":"10.1215/21562261-2019-0065","DOIUrl":null,"url":null,"abstract":"We study $K$-types of degenerate principal series of ${\\rm Sp}(n,\\mathbb{C})$ by using two realisations of these infinite-dimensional representations. The first model we use is the classical compact picture; the second model is conjugate to the non-compact picture via an appropriate partial Fourier transform. In the first case we find a family of $K$-finite vectors that can be expressed as solutions of specific hypergeometric differential equations; the second case leads to a family of $K$-finite vectors whose expressions involve Bessel functions.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":" ","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2018-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Special functions associated with K -types of degenerate principal series of Sp ( n , C )\",\"authors\":\"Gr'egory Mendousse\",\"doi\":\"10.1215/21562261-2019-0065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study $K$-types of degenerate principal series of ${\\\\rm Sp}(n,\\\\mathbb{C})$ by using two realisations of these infinite-dimensional representations. The first model we use is the classical compact picture; the second model is conjugate to the non-compact picture via an appropriate partial Fourier transform. In the first case we find a family of $K$-finite vectors that can be expressed as solutions of specific hypergeometric differential equations; the second case leads to a family of $K$-finite vectors whose expressions involve Bessel functions.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2018-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2019-0065\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2019-0065","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们利用这些无限维表示的两种实现,研究了${\rm Sp}(n,\mathbb{C})$的退化主级数的$K$-类型。我们使用的第一个模型是经典的紧化图;第二个模型通过适当的部分傅里叶变换与非紧化图像共轭。在第一种情况下,我们找到一组K有限向量,它们可以表示为特定超几何微分方程的解;第二种情况导致了K有限向量族,其表达式包含贝塞尔函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Special functions associated with K -types of degenerate principal series of Sp ( n , C )
We study $K$-types of degenerate principal series of ${\rm Sp}(n,\mathbb{C})$ by using two realisations of these infinite-dimensional representations. The first model we use is the classical compact picture; the second model is conjugate to the non-compact picture via an appropriate partial Fourier transform. In the first case we find a family of $K$-finite vectors that can be expressed as solutions of specific hypergeometric differential equations; the second case leads to a family of $K$-finite vectors whose expressions involve Bessel functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信