{"title":"基于运动约束的DVL/SINS紧耦合定位补偿算法","authors":"Kaidi Jin, Hongzhou Chai, Chuhan Su, Minzhi Xiang","doi":"10.1080/01490419.2022.2040662","DOIUrl":null,"url":null,"abstract":"Abstract Integration of strapdown inertial navigation system (SINS) and doppler velocity log (DVL) is usually applied in underwater applications, wherein DVL provides the three-dimensional velocity, and hence the accumulated error of SINS can be compensated. However, the DVL/SINS loosely coupled approach fails in the complex environments on the condition of fewer than three available beams. And the tightly coupled approach divergences with only one direction velocity information from the beam measurement. To solve the problems, a novel tightly coupled method is proposed in this paper, in which the state of UUV motion is considered, and a robust adaptive Kalman filter is utilized to dynamically estimate the observation noise. Experiment results indicate that the proposed method is efficient in UUV missions for beam limited environment.","PeriodicalId":49884,"journal":{"name":"Marine Geodesy","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A Compensation Algorithm with Motion Constraint in DVL/SINS Tightly Coupled Positioning\",\"authors\":\"Kaidi Jin, Hongzhou Chai, Chuhan Su, Minzhi Xiang\",\"doi\":\"10.1080/01490419.2022.2040662\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Integration of strapdown inertial navigation system (SINS) and doppler velocity log (DVL) is usually applied in underwater applications, wherein DVL provides the three-dimensional velocity, and hence the accumulated error of SINS can be compensated. However, the DVL/SINS loosely coupled approach fails in the complex environments on the condition of fewer than three available beams. And the tightly coupled approach divergences with only one direction velocity information from the beam measurement. To solve the problems, a novel tightly coupled method is proposed in this paper, in which the state of UUV motion is considered, and a robust adaptive Kalman filter is utilized to dynamically estimate the observation noise. Experiment results indicate that the proposed method is efficient in UUV missions for beam limited environment.\",\"PeriodicalId\":49884,\"journal\":{\"name\":\"Marine Geodesy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2022-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Marine Geodesy\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1080/01490419.2022.2040662\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Marine Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/01490419.2022.2040662","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
A Compensation Algorithm with Motion Constraint in DVL/SINS Tightly Coupled Positioning
Abstract Integration of strapdown inertial navigation system (SINS) and doppler velocity log (DVL) is usually applied in underwater applications, wherein DVL provides the three-dimensional velocity, and hence the accumulated error of SINS can be compensated. However, the DVL/SINS loosely coupled approach fails in the complex environments on the condition of fewer than three available beams. And the tightly coupled approach divergences with only one direction velocity information from the beam measurement. To solve the problems, a novel tightly coupled method is proposed in this paper, in which the state of UUV motion is considered, and a robust adaptive Kalman filter is utilized to dynamically estimate the observation noise. Experiment results indicate that the proposed method is efficient in UUV missions for beam limited environment.
期刊介绍:
The aim of Marine Geodesy is to stimulate progress in ocean surveys, mapping, and remote sensing by promoting problem-oriented research in the marine and coastal environment.
The journal will consider articles on the following topics:
topography and mapping;
satellite altimetry;
bathymetry;
positioning;
precise navigation;
boundary demarcation and determination;
tsunamis;
plate/tectonics;
geoid determination;
hydrographic and oceanographic observations;
acoustics and space instrumentation;
ground truth;
system calibration and validation;
geographic information systems.