线性微分方程组的HAAR小波数值解

M. Devi, Seema Sharma, Sunil Rawan
{"title":"线性微分方程组的HAAR小波数值解","authors":"M. Devi, Seema Sharma, Sunil Rawan","doi":"10.46753/pjaa.2023.v010i01.005","DOIUrl":null,"url":null,"abstract":". In this article, a general procedure of forming the Haar wavelets operational matrix is discussed. The Haar wavelet system which has localization property is applied to find approximate solution to a given system which is very near to the exact solution of the system. We demonstrate this procedure through numerical examples. A comparison of approximate solutions and the exact solutions is done along with the error analysis in order to establish that the Haar wavelet system gives better approximate solutions.","PeriodicalId":37079,"journal":{"name":"Poincare Journal of Analysis and Applications","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUMERICAL SOLUTIONS OF SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS USING HAAR WAVELET APPROACH\",\"authors\":\"M. Devi, Seema Sharma, Sunil Rawan\",\"doi\":\"10.46753/pjaa.2023.v010i01.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". In this article, a general procedure of forming the Haar wavelets operational matrix is discussed. The Haar wavelet system which has localization property is applied to find approximate solution to a given system which is very near to the exact solution of the system. We demonstrate this procedure through numerical examples. A comparison of approximate solutions and the exact solutions is done along with the error analysis in order to establish that the Haar wavelet system gives better approximate solutions.\",\"PeriodicalId\":37079,\"journal\":{\"name\":\"Poincare Journal of Analysis and Applications\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Poincare Journal of Analysis and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.46753/pjaa.2023.v010i01.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Poincare Journal of Analysis and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46753/pjaa.2023.v010i01.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了形成Haar小波运算矩阵的一般过程。将具有局部化性质的Haar小波系统应用于给定系统的近似解,该近似解与系统的精确解非常接近。我们通过数值例子演示了这一过程。对近似解和精确解进行了比较,并进行了误差分析,以确定Haar小波系统给出了更好的近似解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUMERICAL SOLUTIONS OF SYSTEM OF LINEAR DIFFERENTIAL EQUATIONS USING HAAR WAVELET APPROACH
. In this article, a general procedure of forming the Haar wavelets operational matrix is discussed. The Haar wavelet system which has localization property is applied to find approximate solution to a given system which is very near to the exact solution of the system. We demonstrate this procedure through numerical examples. A comparison of approximate solutions and the exact solutions is done along with the error analysis in order to establish that the Haar wavelet system gives better approximate solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Poincare Journal of Analysis and Applications
Poincare Journal of Analysis and Applications Mathematics-Applied Mathematics
CiteScore
0.60
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信