Duffing型方程:振幅剖面的奇异点和分岔

IF 0.9 4区 物理与天体物理 Q3 PHYSICS, MULTIDISCIPLINARY
J. Kyzioł, Andrzej Okni'nski
{"title":"Duffing型方程:振幅剖面的奇异点和分岔","authors":"J. Kyzioł, Andrzej Okni'nski","doi":"10.5506/APhysPolB.52.1239","DOIUrl":null,"url":null,"abstract":"We study the Duffing equation and its generalizations with polynomial nonlinearities. Recently, we have demonstrated that metamorphoses of the amplitude response curves, computed by asymptotic methods in implicit form as F (Ω, A) = 0, permit prediction of qualitative changes of dynamics occurring at singular points of the implicit curve F (Ω, A) = 0. In the present work we determine a global structure of singular points of the amplitude profiles computing bifurcation sets, i.e. sets containing all points in the parameter space for which the amplitude profile has a singular point. We connect our work with independent research on tangential points on amplitude profiles, associated with jump phenomena, characteristic for the Duffing equation. We also show that our techniques can be applied to solutions of form Ω± = f± (A), obtained within other asymptotic approaches.","PeriodicalId":7060,"journal":{"name":"Acta Physica Polonica B","volume":" ","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Duffing-type Equations: Singular Points of Amplitude Profiles and Bifurcations\",\"authors\":\"J. Kyzioł, Andrzej Okni'nski\",\"doi\":\"10.5506/APhysPolB.52.1239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the Duffing equation and its generalizations with polynomial nonlinearities. Recently, we have demonstrated that metamorphoses of the amplitude response curves, computed by asymptotic methods in implicit form as F (Ω, A) = 0, permit prediction of qualitative changes of dynamics occurring at singular points of the implicit curve F (Ω, A) = 0. In the present work we determine a global structure of singular points of the amplitude profiles computing bifurcation sets, i.e. sets containing all points in the parameter space for which the amplitude profile has a singular point. We connect our work with independent research on tangential points on amplitude profiles, associated with jump phenomena, characteristic for the Duffing equation. We also show that our techniques can be applied to solutions of form Ω± = f± (A), obtained within other asymptotic approaches.\",\"PeriodicalId\":7060,\"journal\":{\"name\":\"Acta Physica Polonica B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2021-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Polonica B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.5506/APhysPolB.52.1239\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Polonica B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5506/APhysPolB.52.1239","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

我们研究了具有多项式非线性的Duffing方程及其推广。最近,我们已经证明了振幅响应曲线的变形,通过隐式形式的渐近方法计算为F(Ω,A)=0,可以预测在隐式曲线F(Ω、A)=0的奇异点处发生的动力学的定性变化。在目前的工作中,我们确定了计算分叉集的振幅分布的奇异点的全局结构,即包含参数空间中振幅分布具有奇异点的所有点的集合。我们将我们的工作与振幅剖面上切点的独立研究联系起来,这些切点与跳跃现象有关,是Duffing方程的特征。我们还证明了我们的技术可以应用于在其他渐近方法中获得的Ω±=f±(A)形式的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Duffing-type Equations: Singular Points of Amplitude Profiles and Bifurcations
We study the Duffing equation and its generalizations with polynomial nonlinearities. Recently, we have demonstrated that metamorphoses of the amplitude response curves, computed by asymptotic methods in implicit form as F (Ω, A) = 0, permit prediction of qualitative changes of dynamics occurring at singular points of the implicit curve F (Ω, A) = 0. In the present work we determine a global structure of singular points of the amplitude profiles computing bifurcation sets, i.e. sets containing all points in the parameter space for which the amplitude profile has a singular point. We connect our work with independent research on tangential points on amplitude profiles, associated with jump phenomena, characteristic for the Duffing equation. We also show that our techniques can be applied to solutions of form Ω± = f± (A), obtained within other asymptotic approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Physica Polonica B
Acta Physica Polonica B 物理-物理:综合
CiteScore
1.70
自引率
20.00%
发文量
30
审稿时长
3-8 weeks
期刊介绍: Acta Physica Polonica B covers the following areas of physics: -General and Mathematical Physics- Particle Physics and Field Theory- Nuclear Physics- Theory of Relativity and Astrophysics- Statistical Physics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信