用神经网络方法预测地震反应的挑战

Tecnia Pub Date : 2023-08-03 DOI:10.21754/tecnia.v33i1.1434
Carlos Zavala Toledo, M. Díaz, Claudia Honma
{"title":"用神经网络方法预测地震反应的挑战","authors":"Carlos Zavala Toledo, M. Díaz, Claudia Honma","doi":"10.21754/tecnia.v33i1.1434","DOIUrl":null,"url":null,"abstract":"Since the decade of the 1990 the neural networks algorithms have been used for compute approximate solutions for different problems in engineering. \nIn the building behavior against loads is important to know its response. The behavior during the earthquakes and the estimation of the response is quite difficult to compute due to the nonlinearity of geometry and material properties. Neural networks approach is a powerful tool for computing the response of structures with an appropriate learning process from big data of structural components. Even if some material parameters are unknown, the learning on a neural network will be possible and will provide an estimation using collect information from experience and learning. \nTo make a learning process in this paper, we present a simple algorithm of back propagation implemented in python programming language where the output shows the decrease of the error and how the response start to learn from the beginning until the end of the process. The results show good agreement between the learning data set and predicted response after the neural network learning.","PeriodicalId":31729,"journal":{"name":"Tecnia","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"En el desafío de la predicción de la respuesta a terremotos mediante el enfoque de redes neuronales\",\"authors\":\"Carlos Zavala Toledo, M. Díaz, Claudia Honma\",\"doi\":\"10.21754/tecnia.v33i1.1434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since the decade of the 1990 the neural networks algorithms have been used for compute approximate solutions for different problems in engineering. \\nIn the building behavior against loads is important to know its response. The behavior during the earthquakes and the estimation of the response is quite difficult to compute due to the nonlinearity of geometry and material properties. Neural networks approach is a powerful tool for computing the response of structures with an appropriate learning process from big data of structural components. Even if some material parameters are unknown, the learning on a neural network will be possible and will provide an estimation using collect information from experience and learning. \\nTo make a learning process in this paper, we present a simple algorithm of back propagation implemented in python programming language where the output shows the decrease of the error and how the response start to learn from the beginning until the end of the process. The results show good agreement between the learning data set and predicted response after the neural network learning.\",\"PeriodicalId\":31729,\"journal\":{\"name\":\"Tecnia\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tecnia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21754/tecnia.v33i1.1434\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tecnia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21754/tecnia.v33i1.1434","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自20世纪90年代以来,神经网络算法已被用于计算工程中各种问题的近似解。在建筑物的抗荷载行为中,了解其响应是很重要的。由于结构的几何特性和材料特性的非线性,使得结构在地震中的行为和响应的估计很难计算。神经网络方法通过对结构构件大数据的适当学习,是计算结构响应的有力工具。即使某些材料参数是未知的,神经网络上的学习也是可能的,并将利用从经验和学习中收集的信息提供估计。为了使本文的学习过程,我们提出了一个简单的反向传播算法,用python编程语言实现,其中输出显示误差的减少以及响应如何从开始到过程结束开始学习。结果表明,学习数据集与神经网络学习后的预测响应具有较好的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
En el desafío de la predicción de la respuesta a terremotos mediante el enfoque de redes neuronales
Since the decade of the 1990 the neural networks algorithms have been used for compute approximate solutions for different problems in engineering. In the building behavior against loads is important to know its response. The behavior during the earthquakes and the estimation of the response is quite difficult to compute due to the nonlinearity of geometry and material properties. Neural networks approach is a powerful tool for computing the response of structures with an appropriate learning process from big data of structural components. Even if some material parameters are unknown, the learning on a neural network will be possible and will provide an estimation using collect information from experience and learning. To make a learning process in this paper, we present a simple algorithm of back propagation implemented in python programming language where the output shows the decrease of the error and how the response start to learn from the beginning until the end of the process. The results show good agreement between the learning data set and predicted response after the neural network learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
10
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信