一类奇异非线性q-差分微分Cauchy问题的渐近性和收敛性

Q3 Mathematics
S. Malek
{"title":"一类奇异非线性q-差分微分Cauchy问题的渐近性和收敛性","authors":"S. Malek","doi":"10.1155/2022/9637628","DOIUrl":null,"url":null,"abstract":"We examine a family of nonlinear \n \n q\n −\n \n difference-differential Cauchy problems obtained as a coupling of linear Cauchy problems containing dilation \n \n q\n −\n \n difference operators, recently investigated by the author, and quasilinear Kowalevski type problems that involve contraction \n \n q\n −\n \n difference operators. We build up local holomorphic solutions to these problems. Two aspects of these solutions are explored. One facet deals with asymptotic expansions in the complex time variable for which a mixed type Gevrey and \n \n q\n −\n \n Gevrey structure are exhibited. The other feature concerns the problem of confluence of these solutions as \n \n q\n >\n 1\n \n tends to 1.","PeriodicalId":7061,"journal":{"name":"Abstract and Applied Analysis","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics and Confluence for a Singular Nonlinear \\n q\\n -Difference-Differential Cauchy Problem\",\"authors\":\"S. Malek\",\"doi\":\"10.1155/2022/9637628\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We examine a family of nonlinear \\n \\n q\\n −\\n \\n difference-differential Cauchy problems obtained as a coupling of linear Cauchy problems containing dilation \\n \\n q\\n −\\n \\n difference operators, recently investigated by the author, and quasilinear Kowalevski type problems that involve contraction \\n \\n q\\n −\\n \\n difference operators. We build up local holomorphic solutions to these problems. Two aspects of these solutions are explored. One facet deals with asymptotic expansions in the complex time variable for which a mixed type Gevrey and \\n \\n q\\n −\\n \\n Gevrey structure are exhibited. The other feature concerns the problem of confluence of these solutions as \\n \\n q\\n >\\n 1\\n \\n tends to 1.\",\"PeriodicalId\":7061,\"journal\":{\"name\":\"Abstract and Applied Analysis\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Abstract and Applied Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/9637628\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Abstract and Applied Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/9637628","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一组非线性q−差分微分柯西问题,这些问题是作者最近研究的包含扩张q−差算子的线性柯西问题和包含收缩q−差运算符的拟线性Kowalevski型问题的耦合。我们建立了这些问题的局部全纯解。探讨了这些解决方案的两个方面。一个方面涉及复时间变量中的渐近展开,其表现出混合型Gevrey和q−Gevrey结构。另一个特征涉及当q>1趋向于1时这些解的汇合问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotics and Confluence for a Singular Nonlinear q -Difference-Differential Cauchy Problem
We examine a family of nonlinear q − difference-differential Cauchy problems obtained as a coupling of linear Cauchy problems containing dilation q − difference operators, recently investigated by the author, and quasilinear Kowalevski type problems that involve contraction q − difference operators. We build up local holomorphic solutions to these problems. Two aspects of these solutions are explored. One facet deals with asymptotic expansions in the complex time variable for which a mixed type Gevrey and q − Gevrey structure are exhibited. The other feature concerns the problem of confluence of these solutions as q > 1 tends to 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
36
审稿时长
3.5 months
期刊介绍: Abstract and Applied Analysis is a mathematical journal devoted exclusively to the publication of high-quality research papers in the fields of abstract and applied analysis. Emphasis is placed on important developments in classical analysis, linear and nonlinear functional analysis, ordinary and partial differential equations, optimization theory, and control theory. Abstract and Applied Analysis supports the publication of original material involving the complete solution of significant problems in the above disciplines. Abstract and Applied Analysis also encourages the publication of timely and thorough survey articles on current trends in the theory and applications of analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信