{"title":"微圆圆盘低雷诺数振动特性的预测","authors":"A. El Baroudi, F. Razafimahery","doi":"10.1142/S1756973718500051","DOIUrl":null,"url":null,"abstract":"In the current study, a theoretical method is developed to predict the vibrational behavior of micro-circular disks filled with viscous fluids and numerical results are presented to validate the model. Vibrations with two outer boundary conditions, rigid and deformable vessel, are studied. The coupled governing equations of both rigid and deformable vessel vibration are solved by the analytical procedure, taking fluid–structure interaction into account. The fluid gap effect on the coupled eigenfrequencies is also considered. The frequency spectrum plots of the first several eigenfrequencies are presented in a wide range of fluid gap and elasticity ratio. The correctness of results is demonstrated using a commercial finite element software. It is shown that the obtained results through the proposed method reveal very good agreement with the numerical solution.","PeriodicalId":43242,"journal":{"name":"Journal of Multiscale Modelling","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1756973718500051","citationCount":"1","resultStr":"{\"title\":\"Prediction of Vibration Behavior of Micro-Circular Disks at Low Reynolds Number Regime\",\"authors\":\"A. El Baroudi, F. Razafimahery\",\"doi\":\"10.1142/S1756973718500051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the current study, a theoretical method is developed to predict the vibrational behavior of micro-circular disks filled with viscous fluids and numerical results are presented to validate the model. Vibrations with two outer boundary conditions, rigid and deformable vessel, are studied. The coupled governing equations of both rigid and deformable vessel vibration are solved by the analytical procedure, taking fluid–structure interaction into account. The fluid gap effect on the coupled eigenfrequencies is also considered. The frequency spectrum plots of the first several eigenfrequencies are presented in a wide range of fluid gap and elasticity ratio. The correctness of results is demonstrated using a commercial finite element software. It is shown that the obtained results through the proposed method reveal very good agreement with the numerical solution.\",\"PeriodicalId\":43242,\"journal\":{\"name\":\"Journal of Multiscale Modelling\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1142/S1756973718500051\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Multiscale Modelling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S1756973718500051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Multiscale Modelling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S1756973718500051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Prediction of Vibration Behavior of Micro-Circular Disks at Low Reynolds Number Regime
In the current study, a theoretical method is developed to predict the vibrational behavior of micro-circular disks filled with viscous fluids and numerical results are presented to validate the model. Vibrations with two outer boundary conditions, rigid and deformable vessel, are studied. The coupled governing equations of both rigid and deformable vessel vibration are solved by the analytical procedure, taking fluid–structure interaction into account. The fluid gap effect on the coupled eigenfrequencies is also considered. The frequency spectrum plots of the first several eigenfrequencies are presented in a wide range of fluid gap and elasticity ratio. The correctness of results is demonstrated using a commercial finite element software. It is shown that the obtained results through the proposed method reveal very good agreement with the numerical solution.