{"title":"求解亥姆霍兹方程柯西问题的加速Dirichlet–Robin交替算法","authors":"F. Berntsson, Jennifer Chepkorir, V. Kozlov","doi":"10.1093/IMAMAT/HXAB034","DOIUrl":null,"url":null,"abstract":"\n The Cauchy problem for Helmholtz equation, for moderate wave number $k^{2}$, is considered. In the previous paper of Achieng et al. (2020, Analysis of Dirichlet–Robin iterations for solving the Cauchy problem for elliptic equations. Bull. Iran. Math. Soc.), a proof of convergence for the Dirichlet–Robin alternating algorithm was given for general elliptic operators of second order, provided that appropriate Robin parameters were used. Also, it has been noted that the rate of convergence for the alternating iterative algorithm is quite slow. Thus, we reformulate the Cauchy problem as an operator equation and implement iterative methods based on Krylov subspaces. The aim is to achieve faster convergence. In particular, we consider the Landweber method, the conjugate gradient method and the generalized minimal residual method. The numerical results show that all the methods work well. In this work, we discuss also how one can approach non-symmetric differential operators by using similar operator equations and model problems which are used for symmetric differential operators.","PeriodicalId":56297,"journal":{"name":"IMA Journal of Applied Mathematics","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2021-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accelerated Dirichlet–Robin alternating algorithms for solving the Cauchy problem for the Helmholtz equation\",\"authors\":\"F. Berntsson, Jennifer Chepkorir, V. Kozlov\",\"doi\":\"10.1093/IMAMAT/HXAB034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The Cauchy problem for Helmholtz equation, for moderate wave number $k^{2}$, is considered. In the previous paper of Achieng et al. (2020, Analysis of Dirichlet–Robin iterations for solving the Cauchy problem for elliptic equations. Bull. Iran. Math. Soc.), a proof of convergence for the Dirichlet–Robin alternating algorithm was given for general elliptic operators of second order, provided that appropriate Robin parameters were used. Also, it has been noted that the rate of convergence for the alternating iterative algorithm is quite slow. Thus, we reformulate the Cauchy problem as an operator equation and implement iterative methods based on Krylov subspaces. The aim is to achieve faster convergence. In particular, we consider the Landweber method, the conjugate gradient method and the generalized minimal residual method. The numerical results show that all the methods work well. In this work, we discuss also how one can approach non-symmetric differential operators by using similar operator equations and model problems which are used for symmetric differential operators.\",\"PeriodicalId\":56297,\"journal\":{\"name\":\"IMA Journal of Applied Mathematics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IMA Journal of Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/IMAMAT/HXAB034\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IMA Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/IMAMAT/HXAB034","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Accelerated Dirichlet–Robin alternating algorithms for solving the Cauchy problem for the Helmholtz equation
The Cauchy problem for Helmholtz equation, for moderate wave number $k^{2}$, is considered. In the previous paper of Achieng et al. (2020, Analysis of Dirichlet–Robin iterations for solving the Cauchy problem for elliptic equations. Bull. Iran. Math. Soc.), a proof of convergence for the Dirichlet–Robin alternating algorithm was given for general elliptic operators of second order, provided that appropriate Robin parameters were used. Also, it has been noted that the rate of convergence for the alternating iterative algorithm is quite slow. Thus, we reformulate the Cauchy problem as an operator equation and implement iterative methods based on Krylov subspaces. The aim is to achieve faster convergence. In particular, we consider the Landweber method, the conjugate gradient method and the generalized minimal residual method. The numerical results show that all the methods work well. In this work, we discuss also how one can approach non-symmetric differential operators by using similar operator equations and model problems which are used for symmetric differential operators.
期刊介绍:
The IMA Journal of Applied Mathematics is a direct successor of the Journal of the Institute of Mathematics and its Applications which was started in 1965. It is an interdisciplinary journal that publishes research on mathematics arising in the physical sciences and engineering as well as suitable articles in the life sciences, social sciences, and finance. Submissions should address interesting and challenging mathematical problems arising in applications. A good balance between the development of the application(s) and the analysis is expected. Papers that either use established methods to address solved problems or that present analysis in the absence of applications will not be considered.
The journal welcomes submissions in many research areas. Examples are: continuum mechanics materials science and elasticity, including boundary layer theory, combustion, complex flows and soft matter, electrohydrodynamics and magnetohydrodynamics, geophysical flows, granular flows, interfacial and free surface flows, vortex dynamics; elasticity theory; linear and nonlinear wave propagation, nonlinear optics and photonics; inverse problems; applied dynamical systems and nonlinear systems; mathematical physics; stochastic differential equations and stochastic dynamics; network science; industrial applications.