海洛因成瘾双品系模型的后向分岔

IF 1.1 Q2 MATHEMATICS, APPLIED
R. Memarbashi, A. Ghasemabadi, Z. Ebadi
{"title":"海洛因成瘾双品系模型的后向分岔","authors":"R. Memarbashi, A. Ghasemabadi, Z. Ebadi","doi":"10.22034/CMDE.2021.44619.1881","DOIUrl":null,"url":null,"abstract":"Among the various causes of heroin addiction, the use of ‎prescription ‎opioids‎ is one of the main reasons. In this article, we introduce and analyze a two ‎strain‎ epidemic model with super infection for modeling the effect of ‎prescrib‎ed opioids abuse on heroin ‎addiction.‎ ‎Our ‎model ‎contains ‎the ‎effect ‎of ‎relapse ‎of ‎individuals ‎under ‎treatment/rehabilitation‎ ‎to drug abuse in each ‎strain.‎ ‎We ‎extract‎ the basic reproductive ‎ratio, ‎the‎ invasion numbers‎, ‎and study the occurrence of backward bifurcation in strain ‎domi‎nance equilibria, i.e., boundary ‎equilibria. ‎Also, ‎we ‎study ‎both‎ ‎‎local and global stability of DFE and boundary equilibria ‎under suitable conditions‎.‎ ‎Furthermore, we study the ‎existence of the coexistence equilibrium point‎. We prove that when ‎$‎R_0<1‎$‎, the coexistence equilibrium point can exist, i.e., backward bifurcation ‎occurs‎ in coexistence equilibria. ‎Finally, we use numerical simulation to describe the obtained analytical results.‎","PeriodicalId":44352,"journal":{"name":"Computational Methods for Differential Equations","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2021-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Backward bifurcation in a two strain model of heroin addiction\",\"authors\":\"R. Memarbashi, A. Ghasemabadi, Z. Ebadi\",\"doi\":\"10.22034/CMDE.2021.44619.1881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Among the various causes of heroin addiction, the use of ‎prescription ‎opioids‎ is one of the main reasons. In this article, we introduce and analyze a two ‎strain‎ epidemic model with super infection for modeling the effect of ‎prescrib‎ed opioids abuse on heroin ‎addiction.‎ ‎Our ‎model ‎contains ‎the ‎effect ‎of ‎relapse ‎of ‎individuals ‎under ‎treatment/rehabilitation‎ ‎to drug abuse in each ‎strain.‎ ‎We ‎extract‎ the basic reproductive ‎ratio, ‎the‎ invasion numbers‎, ‎and study the occurrence of backward bifurcation in strain ‎domi‎nance equilibria, i.e., boundary ‎equilibria. ‎Also, ‎we ‎study ‎both‎ ‎‎local and global stability of DFE and boundary equilibria ‎under suitable conditions‎.‎ ‎Furthermore, we study the ‎existence of the coexistence equilibrium point‎. We prove that when ‎$‎R_0<1‎$‎, the coexistence equilibrium point can exist, i.e., backward bifurcation ‎occurs‎ in coexistence equilibria. ‎Finally, we use numerical simulation to describe the obtained analytical results.‎\",\"PeriodicalId\":44352,\"journal\":{\"name\":\"Computational Methods for Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2021-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Methods for Differential Equations\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/CMDE.2021.44619.1881\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Methods for Differential Equations","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/CMDE.2021.44619.1881","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在海洛因成瘾的各种原因中,使用“处方”阿片类药物是主要原因之一。在本文中,我们引入并分析了一个具有超感染的双菌株流行病模型,用于模拟处方阿片类药物滥用对海洛因成瘾的影响。我们的模型包含每个毒株中正在接受治疗/康复的个体对药物滥用的“复发”的“影响”。我们提取了基本繁殖比、入侵数,并研究了应变多平衡即边界平衡中后向分叉的发生情况。同时,我们还研究了在适当条件下DFE和边界平衡的局部稳定性和全局稳定性。进一步研究了共存平衡点的存在性。证明了当R_0<1时共存平衡点可以存在,即共存平衡点发生后向分岔。最后,我们用数值模拟来描述得到的解析结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Backward bifurcation in a two strain model of heroin addiction
Among the various causes of heroin addiction, the use of ‎prescription ‎opioids‎ is one of the main reasons. In this article, we introduce and analyze a two ‎strain‎ epidemic model with super infection for modeling the effect of ‎prescrib‎ed opioids abuse on heroin ‎addiction.‎ ‎Our ‎model ‎contains ‎the ‎effect ‎of ‎relapse ‎of ‎individuals ‎under ‎treatment/rehabilitation‎ ‎to drug abuse in each ‎strain.‎ ‎We ‎extract‎ the basic reproductive ‎ratio, ‎the‎ invasion numbers‎, ‎and study the occurrence of backward bifurcation in strain ‎domi‎nance equilibria, i.e., boundary ‎equilibria. ‎Also, ‎we ‎study ‎both‎ ‎‎local and global stability of DFE and boundary equilibria ‎under suitable conditions‎.‎ ‎Furthermore, we study the ‎existence of the coexistence equilibrium point‎. We prove that when ‎$‎R_0<1‎$‎, the coexistence equilibrium point can exist, i.e., backward bifurcation ‎occurs‎ in coexistence equilibria. ‎Finally, we use numerical simulation to describe the obtained analytical results.‎
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.20
自引率
27.30%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信