{"title":"紧致李群上的非线性分数阻尼波动方程","authors":"Aparajita Dasgupta, Vishvesh Kumar, Shyam Swarup Mondal","doi":"10.3233/asy-231842","DOIUrl":null,"url":null,"abstract":"In this paper, we deal with the initial value fractional damped wave equation on G, a compact Lie group, with power-type nonlinearity. The aim of this manuscript is twofold. First, using the Fourier analysis on compact Lie groups, we prove a local in-time existence result in the energy space for the fractional damped wave equation on G. Moreover, a finite time blow-up result is established under certain conditions on the initial data. In the next part of the paper, we consider fractional wave equation with lower order terms, i.e., damping and mass with the same power type nonlinearity on compact Lie groups, and prove the global in-time existence of small data solutions in the energy evolution space.","PeriodicalId":55438,"journal":{"name":"Asymptotic Analysis","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2022-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear fractional damped wave equation on compact Lie groups\",\"authors\":\"Aparajita Dasgupta, Vishvesh Kumar, Shyam Swarup Mondal\",\"doi\":\"10.3233/asy-231842\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we deal with the initial value fractional damped wave equation on G, a compact Lie group, with power-type nonlinearity. The aim of this manuscript is twofold. First, using the Fourier analysis on compact Lie groups, we prove a local in-time existence result in the energy space for the fractional damped wave equation on G. Moreover, a finite time blow-up result is established under certain conditions on the initial data. In the next part of the paper, we consider fractional wave equation with lower order terms, i.e., damping and mass with the same power type nonlinearity on compact Lie groups, and prove the global in-time existence of small data solutions in the energy evolution space.\",\"PeriodicalId\":55438,\"journal\":{\"name\":\"Asymptotic Analysis\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2022-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptotic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3233/asy-231842\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptotic Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3233/asy-231842","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Nonlinear fractional damped wave equation on compact Lie groups
In this paper, we deal with the initial value fractional damped wave equation on G, a compact Lie group, with power-type nonlinearity. The aim of this manuscript is twofold. First, using the Fourier analysis on compact Lie groups, we prove a local in-time existence result in the energy space for the fractional damped wave equation on G. Moreover, a finite time blow-up result is established under certain conditions on the initial data. In the next part of the paper, we consider fractional wave equation with lower order terms, i.e., damping and mass with the same power type nonlinearity on compact Lie groups, and prove the global in-time existence of small data solutions in the energy evolution space.
期刊介绍:
The journal Asymptotic Analysis fulfills a twofold function. It aims at publishing original mathematical results in the asymptotic theory of problems affected by the presence of small or large parameters on the one hand, and at giving specific indications of their possible applications to different fields of natural sciences on the other hand. Asymptotic Analysis thus provides mathematicians with a concentrated source of newly acquired information which they may need in the analysis of asymptotic problems.