M. Gamaleldin, Maya Moussa, Salma Alaa Eldin Imbaby
{"title":"白细胞介素-10 (1082G/A)和剪接因子3B亚基1 (2098A/G)基因多态性在慢性淋巴细胞白血病中的作用","authors":"M. Gamaleldin, Maya Moussa, Salma Alaa Eldin Imbaby","doi":"10.4103/joah.joah_93_21","DOIUrl":null,"url":null,"abstract":"OBJECTIVE: Interleukin-10 (IL-10) gene polymorphisms might play a part in the development of some malignant tumors. It has been linked with high bcl-2 expression in some B-lymphocyte malignancies. Its relationship with chronic lymphocytic leukemia (CLL) development is still under investigation. Other studies have linked Splicing Factor 3B Subunit 1 (SF3B1) mutations to a poorer prognosis of CLL. From this context, we have great interest to investigate the effect of both IL-10 (1082G/A) and SF3B1 (2098A/G) gene polymorphisms on CLL in this study. MATERIALS AND METHODS: Peripheral blood mononuclear cells were analyzed for IL-10 (1082G/A) and SF3B1 (2098A/G) gene polymorphisms by real-time quantitative polymerase chain reaction in 80 newly diagnosed CLL patients and 80 controls. RESULTS: Our results showed that the IL-10 (G/A) genotype, IL-10 (A/A) genotype and IL-10 A allele and SF3B1 (A/G) genotype and SF3B1 G allele were increased significantly in the patients group compared with the control group. CONCLUSION: IL-10 gene polymorphisms (1082 G/A and A/A) and A alleles might be associated with increased risk of CLL development compared with G/G genotypes and G alleles and are a probable risk factor for the disease. Also, our study demonstrated that SF3B1 (2098A/G) polymorphisms and G allele are related to and might be a causative factor for CLL.","PeriodicalId":36501,"journal":{"name":"Journal of Applied Hematology","volume":"13 1","pages":"76 - 83"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of interleukin-10 (1082G/A) and splicing factor 3B subunit 1 (2098A/G) gene polymorphisms in chronic lymphocytic leukemia\",\"authors\":\"M. Gamaleldin, Maya Moussa, Salma Alaa Eldin Imbaby\",\"doi\":\"10.4103/joah.joah_93_21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"OBJECTIVE: Interleukin-10 (IL-10) gene polymorphisms might play a part in the development of some malignant tumors. It has been linked with high bcl-2 expression in some B-lymphocyte malignancies. Its relationship with chronic lymphocytic leukemia (CLL) development is still under investigation. Other studies have linked Splicing Factor 3B Subunit 1 (SF3B1) mutations to a poorer prognosis of CLL. From this context, we have great interest to investigate the effect of both IL-10 (1082G/A) and SF3B1 (2098A/G) gene polymorphisms on CLL in this study. MATERIALS AND METHODS: Peripheral blood mononuclear cells were analyzed for IL-10 (1082G/A) and SF3B1 (2098A/G) gene polymorphisms by real-time quantitative polymerase chain reaction in 80 newly diagnosed CLL patients and 80 controls. RESULTS: Our results showed that the IL-10 (G/A) genotype, IL-10 (A/A) genotype and IL-10 A allele and SF3B1 (A/G) genotype and SF3B1 G allele were increased significantly in the patients group compared with the control group. CONCLUSION: IL-10 gene polymorphisms (1082 G/A and A/A) and A alleles might be associated with increased risk of CLL development compared with G/G genotypes and G alleles and are a probable risk factor for the disease. Also, our study demonstrated that SF3B1 (2098A/G) polymorphisms and G allele are related to and might be a causative factor for CLL.\",\"PeriodicalId\":36501,\"journal\":{\"name\":\"Journal of Applied Hematology\",\"volume\":\"13 1\",\"pages\":\"76 - 83\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Hematology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4103/joah.joah_93_21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/joah.joah_93_21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Medicine","Score":null,"Total":0}
Role of interleukin-10 (1082G/A) and splicing factor 3B subunit 1 (2098A/G) gene polymorphisms in chronic lymphocytic leukemia
OBJECTIVE: Interleukin-10 (IL-10) gene polymorphisms might play a part in the development of some malignant tumors. It has been linked with high bcl-2 expression in some B-lymphocyte malignancies. Its relationship with chronic lymphocytic leukemia (CLL) development is still under investigation. Other studies have linked Splicing Factor 3B Subunit 1 (SF3B1) mutations to a poorer prognosis of CLL. From this context, we have great interest to investigate the effect of both IL-10 (1082G/A) and SF3B1 (2098A/G) gene polymorphisms on CLL in this study. MATERIALS AND METHODS: Peripheral blood mononuclear cells were analyzed for IL-10 (1082G/A) and SF3B1 (2098A/G) gene polymorphisms by real-time quantitative polymerase chain reaction in 80 newly diagnosed CLL patients and 80 controls. RESULTS: Our results showed that the IL-10 (G/A) genotype, IL-10 (A/A) genotype and IL-10 A allele and SF3B1 (A/G) genotype and SF3B1 G allele were increased significantly in the patients group compared with the control group. CONCLUSION: IL-10 gene polymorphisms (1082 G/A and A/A) and A alleles might be associated with increased risk of CLL development compared with G/G genotypes and G alleles and are a probable risk factor for the disease. Also, our study demonstrated that SF3B1 (2098A/G) polymorphisms and G allele are related to and might be a causative factor for CLL.