4DPRR-预测COVID-19 ARDS死亡率的指标

G. Paul, M. R. Krishna, Pl Gautam
{"title":"4DPRR-预测COVID-19 ARDS死亡率的指标","authors":"G. Paul, M. R. Krishna, Pl Gautam","doi":"10.53097/jmv.10048","DOIUrl":null,"url":null,"abstract":"Abstract Background Mortality in ARDS was reduced significantly after the introduction of the low tidal volume ventilation strategy. It has been recently shown that lung-protective ventilation strategies should primarily target driving pressure rather than Vt and that ventilator induced lung injury is not just dependent on tidal volume but also other factors like respiratory rate and driving pressure. Ventilator induced lung injury is also thought to be dependent on the amount of energy transferred by the ventilator to the patient which in turn is dependent on tidal volume size (VT), plateau pressure (Pplat), respiratory rate (RR). Mechanical power can be calculated accurately through power equations which can increase their applicability in clinical practice. One simple composite equation (driving pressure multiplied by four plus respiratory rate [4DPRR]) has been recently suggested as a simple surrogate for the power equation. This equation also doesn’t include PEEP as it has been theorized that it is the only elastic dynamic component of driving energy which affects the outcome and not the elastic static component (i.e., PEEP) and the resistive power (related to flow and airway resistance). Objectives To assess the mechanical power as measured by 4DPRR in mechanically ventilated patients who have moderate to severe COVID-19 ARDS. Methods: We obtained data on ventilatory variables and mechanical power from the patients who were admitted with moderate to severe COVID ARDS in our hospital from March 2021 to June 2021. Results We included 34 patients (28% women; mean age, 57 ± 17 yrs.). The average ΔP was 21.44 ± 3.98 cmH2O, the RR was 23.8 ± 3.84 breaths/min, and the mean driving pressure was 21.4 cmH2O. 28% (n = 10) of patients expired. There was no significant association of 4DPRR (P 0.72), Pplat (P 0.79).and RR (P 0.21) with mortality as predicted by area under ROC curves. Conclusions Driving power and plateau pressure were associated with mortality during controlled mechanical ventilation in COVID ARDS, but a simpler model of mechanical power using only the driving pressure and respiratory rate was found to be a poor predictor of mortality. Keywords: COVID-19, ARDS, Mechanical power, Driving pressure, Plateau pressure","PeriodicalId":73813,"journal":{"name":"Journal of mechanical ventilation","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"4DPRR- Index for predicting mortality in COVID-19 ARDS\",\"authors\":\"G. Paul, M. R. Krishna, Pl Gautam\",\"doi\":\"10.53097/jmv.10048\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Background Mortality in ARDS was reduced significantly after the introduction of the low tidal volume ventilation strategy. It has been recently shown that lung-protective ventilation strategies should primarily target driving pressure rather than Vt and that ventilator induced lung injury is not just dependent on tidal volume but also other factors like respiratory rate and driving pressure. Ventilator induced lung injury is also thought to be dependent on the amount of energy transferred by the ventilator to the patient which in turn is dependent on tidal volume size (VT), plateau pressure (Pplat), respiratory rate (RR). Mechanical power can be calculated accurately through power equations which can increase their applicability in clinical practice. One simple composite equation (driving pressure multiplied by four plus respiratory rate [4DPRR]) has been recently suggested as a simple surrogate for the power equation. This equation also doesn’t include PEEP as it has been theorized that it is the only elastic dynamic component of driving energy which affects the outcome and not the elastic static component (i.e., PEEP) and the resistive power (related to flow and airway resistance). Objectives To assess the mechanical power as measured by 4DPRR in mechanically ventilated patients who have moderate to severe COVID-19 ARDS. Methods: We obtained data on ventilatory variables and mechanical power from the patients who were admitted with moderate to severe COVID ARDS in our hospital from March 2021 to June 2021. Results We included 34 patients (28% women; mean age, 57 ± 17 yrs.). The average ΔP was 21.44 ± 3.98 cmH2O, the RR was 23.8 ± 3.84 breaths/min, and the mean driving pressure was 21.4 cmH2O. 28% (n = 10) of patients expired. There was no significant association of 4DPRR (P 0.72), Pplat (P 0.79).and RR (P 0.21) with mortality as predicted by area under ROC curves. Conclusions Driving power and plateau pressure were associated with mortality during controlled mechanical ventilation in COVID ARDS, but a simpler model of mechanical power using only the driving pressure and respiratory rate was found to be a poor predictor of mortality. Keywords: COVID-19, ARDS, Mechanical power, Driving pressure, Plateau pressure\",\"PeriodicalId\":73813,\"journal\":{\"name\":\"Journal of mechanical ventilation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of mechanical ventilation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.53097/jmv.10048\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of mechanical ventilation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.53097/jmv.10048","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

背景:引入低潮气量通气策略后,ARDS的死亡率显著降低。最近的研究表明,肺保护性通气策略应主要针对驱动压而不是Vt,并且呼吸机引起的肺损伤不仅取决于潮气量,还取决于呼吸速率和驱动压等其他因素。呼吸机引起的肺损伤也被认为取决于呼吸机传递给患者的能量量,而能量量又取决于潮气量大小(VT)、平台压(Pplat)和呼吸速率(RR)。通过功率方程可以准确地计算出机械功率,增加了其在临床中的适用性。一个简单的复合方程(驾驶压力乘以4加上呼吸速率[4DPRR])最近被建议作为功率方程的简单替代。该方程也不包括PEEP,因为理论上认为它是驱动能量中唯一影响结果的弹性动态分量,而不是弹性静态分量(即PEEP)和阻力(与流动和气道阻力有关)。目的评价中~重度COVID-19 ARDS机械通气患者的4DPRR机械功率指标。方法:获取我院2021年3月至2021年6月收治的中重度COVID - ARDS患者的通气变量和机械功率数据。结果纳入34例患者(女性28%;平均年龄(57±17岁)。平均ΔP为21.44±3.98 cmH2O, RR为23.8±3.84次/min,平均驾驶压力为21.4 cmH2O。28% (n = 10)患者死亡。4DPRR (P 0.72)、Pplat (P 0.79)无显著相关性。ROC曲线下面积预测死亡率的RR (P 0.21)。结论驱动功率和平台压力与控制机械通气期间的死亡率相关,但仅使用驱动压力和呼吸速率的简单机械功率模型不能很好地预测死亡率。关键词:COVID-19, ARDS,机械动力,驱动压力,平台压力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
4DPRR- Index for predicting mortality in COVID-19 ARDS
Abstract Background Mortality in ARDS was reduced significantly after the introduction of the low tidal volume ventilation strategy. It has been recently shown that lung-protective ventilation strategies should primarily target driving pressure rather than Vt and that ventilator induced lung injury is not just dependent on tidal volume but also other factors like respiratory rate and driving pressure. Ventilator induced lung injury is also thought to be dependent on the amount of energy transferred by the ventilator to the patient which in turn is dependent on tidal volume size (VT), plateau pressure (Pplat), respiratory rate (RR). Mechanical power can be calculated accurately through power equations which can increase their applicability in clinical practice. One simple composite equation (driving pressure multiplied by four plus respiratory rate [4DPRR]) has been recently suggested as a simple surrogate for the power equation. This equation also doesn’t include PEEP as it has been theorized that it is the only elastic dynamic component of driving energy which affects the outcome and not the elastic static component (i.e., PEEP) and the resistive power (related to flow and airway resistance). Objectives To assess the mechanical power as measured by 4DPRR in mechanically ventilated patients who have moderate to severe COVID-19 ARDS. Methods: We obtained data on ventilatory variables and mechanical power from the patients who were admitted with moderate to severe COVID ARDS in our hospital from March 2021 to June 2021. Results We included 34 patients (28% women; mean age, 57 ± 17 yrs.). The average ΔP was 21.44 ± 3.98 cmH2O, the RR was 23.8 ± 3.84 breaths/min, and the mean driving pressure was 21.4 cmH2O. 28% (n = 10) of patients expired. There was no significant association of 4DPRR (P 0.72), Pplat (P 0.79).and RR (P 0.21) with mortality as predicted by area under ROC curves. Conclusions Driving power and plateau pressure were associated with mortality during controlled mechanical ventilation in COVID ARDS, but a simpler model of mechanical power using only the driving pressure and respiratory rate was found to be a poor predictor of mortality. Keywords: COVID-19, ARDS, Mechanical power, Driving pressure, Plateau pressure
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信