{"title":"液体细胞透射电子显微镜中介质电泳控制粒子组装的可行性","authors":"T. Yamazaki, Hiromasa Niinomi, Y. Kimura","doi":"10.1093/jmicro/dfac021","DOIUrl":null,"url":null,"abstract":"Abstract Liquid-cell transmission electron microscopy (LC-TEM) is a useful technique for observing phenomena in liquid samples with spatial and temporal resolutions similar to those of conventional transmission electron microscopy (TEM). This method is therefore expected to permit the visualization of phenomena previously inaccessible to conventional optical microscopy. However, dynamic processes such as nucleation are difficult to observe by this method because of difficulties in controlling the condition of the sample liquid in the observation area. To approach this problem, we focused on dielectrophoresis, in which electrodes are used to assemble particles, and we investigated the phenomena that occurred when an alternating-current signal was applied to an electrode in an existing liquid cell by using a phase-contrast optical microscope (PCM) and TEM. In PCM, we observed that colloidal particles in a solution were attracted to the electrodes to form assemblies, that the particles aligned along the electric field to form pearl chains and that the pearl chains accumulated to form colloidal crystals. However, these phenomena were not observed in the TEM study because of differences in the design of the relevant holders. The results of our study imply that the particle assembly by using dielectrophoretic forces in LC-TEM should be possible, but further studies, including electric device development, will be required to realize this in practice.","PeriodicalId":48655,"journal":{"name":"Microscopy","volume":"71 1","pages":"231 - 237"},"PeriodicalIF":1.5000,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feasibility of control of particle assembly by dielectrophoresis in liquid-cell transmission electron microscopy\",\"authors\":\"T. Yamazaki, Hiromasa Niinomi, Y. Kimura\",\"doi\":\"10.1093/jmicro/dfac021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Liquid-cell transmission electron microscopy (LC-TEM) is a useful technique for observing phenomena in liquid samples with spatial and temporal resolutions similar to those of conventional transmission electron microscopy (TEM). This method is therefore expected to permit the visualization of phenomena previously inaccessible to conventional optical microscopy. However, dynamic processes such as nucleation are difficult to observe by this method because of difficulties in controlling the condition of the sample liquid in the observation area. To approach this problem, we focused on dielectrophoresis, in which electrodes are used to assemble particles, and we investigated the phenomena that occurred when an alternating-current signal was applied to an electrode in an existing liquid cell by using a phase-contrast optical microscope (PCM) and TEM. In PCM, we observed that colloidal particles in a solution were attracted to the electrodes to form assemblies, that the particles aligned along the electric field to form pearl chains and that the pearl chains accumulated to form colloidal crystals. However, these phenomena were not observed in the TEM study because of differences in the design of the relevant holders. The results of our study imply that the particle assembly by using dielectrophoretic forces in LC-TEM should be possible, but further studies, including electric device development, will be required to realize this in practice.\",\"PeriodicalId\":48655,\"journal\":{\"name\":\"Microscopy\",\"volume\":\"71 1\",\"pages\":\"231 - 237\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2022-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microscopy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jmicro/dfac021\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MICROSCOPY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microscopy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jmicro/dfac021","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROSCOPY","Score":null,"Total":0}
Feasibility of control of particle assembly by dielectrophoresis in liquid-cell transmission electron microscopy
Abstract Liquid-cell transmission electron microscopy (LC-TEM) is a useful technique for observing phenomena in liquid samples with spatial and temporal resolutions similar to those of conventional transmission electron microscopy (TEM). This method is therefore expected to permit the visualization of phenomena previously inaccessible to conventional optical microscopy. However, dynamic processes such as nucleation are difficult to observe by this method because of difficulties in controlling the condition of the sample liquid in the observation area. To approach this problem, we focused on dielectrophoresis, in which electrodes are used to assemble particles, and we investigated the phenomena that occurred when an alternating-current signal was applied to an electrode in an existing liquid cell by using a phase-contrast optical microscope (PCM) and TEM. In PCM, we observed that colloidal particles in a solution were attracted to the electrodes to form assemblies, that the particles aligned along the electric field to form pearl chains and that the pearl chains accumulated to form colloidal crystals. However, these phenomena were not observed in the TEM study because of differences in the design of the relevant holders. The results of our study imply that the particle assembly by using dielectrophoretic forces in LC-TEM should be possible, but further studies, including electric device development, will be required to realize this in practice.
期刊介绍:
Microscopy, previously Journal of Electron Microscopy, promotes research combined with any type of microscopy techniques, applied in life and material sciences. Microscopy is the official journal of the Japanese Society of Microscopy.