Juthamard Kaiphoem, Natcha Sornhiran, P. Leksungnoen, Apinya Saentho, Arnon Nansahwang, Sutdacha Khunthong, S. Aramrak, N. Prakongkep, W. Wisawapipat
{"title":"常规与有机旱作水稻生产碳氮生物地球化学循环","authors":"Juthamard Kaiphoem, Natcha Sornhiran, P. Leksungnoen, Apinya Saentho, Arnon Nansahwang, Sutdacha Khunthong, S. Aramrak, N. Prakongkep, W. Wisawapipat","doi":"10.32526/ennrj/20/202200019","DOIUrl":null,"url":null,"abstract":"Dwindling carbon (C) and nitrogen (N) levels in paddy soils decreases rice production and threaten human food security globally. The efficient maintenance of C and N fluxes in soil-rice systems is a crucial prerequisite for agricultural and environmental sustainability. Herein, we examined the C and N fluxes from 63 rainfed rice paddy fields under conventional farming (CF) and organic farming (OF) systems in Thailand. The C and N fluxes were measured based on a detailed analysis of relevant influxes (fertilizer, manure, and biomass addition) and effluxes (biomass harvest and greenhouse gas emission). The results demonstrated that the harvested grain and straw contributed to the most abundant C and N effluxes for both farming systems. The CH4 effluxes were moderate, whereas the N2O effluxes were meager relative to their total effluxes. Stubble incorporation and animal manure addition to soil were the most extensive C influxes. However, the primary N influxes were stubble incorporation and animal manure addition for the OF system, and chemical-N fertilizers for the CF system. Net C depletions were observed in both the CF and OF systems. However, net N was depleted and accumulated in the CF and OF systems, respectively. Straw incorporation to soils could restore the net C accumulations for the CF and OF systems and elevate the net N accumulation for both systems. This study highlighted that complete straw removal has exacerbated the C and N stock in soil-rice systems, inducing insecurity for the environment and the agricultural systems. Effective straw management is a simple approach for sustaining paddy rice production.","PeriodicalId":11784,"journal":{"name":"Environment and Natural Resources Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Biogeochemical Cycling of Carbon and Nitrogen in Rainfed Rice Production Under Conventional and Organic Rice Farming\",\"authors\":\"Juthamard Kaiphoem, Natcha Sornhiran, P. Leksungnoen, Apinya Saentho, Arnon Nansahwang, Sutdacha Khunthong, S. Aramrak, N. Prakongkep, W. Wisawapipat\",\"doi\":\"10.32526/ennrj/20/202200019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dwindling carbon (C) and nitrogen (N) levels in paddy soils decreases rice production and threaten human food security globally. The efficient maintenance of C and N fluxes in soil-rice systems is a crucial prerequisite for agricultural and environmental sustainability. Herein, we examined the C and N fluxes from 63 rainfed rice paddy fields under conventional farming (CF) and organic farming (OF) systems in Thailand. The C and N fluxes were measured based on a detailed analysis of relevant influxes (fertilizer, manure, and biomass addition) and effluxes (biomass harvest and greenhouse gas emission). The results demonstrated that the harvested grain and straw contributed to the most abundant C and N effluxes for both farming systems. The CH4 effluxes were moderate, whereas the N2O effluxes were meager relative to their total effluxes. Stubble incorporation and animal manure addition to soil were the most extensive C influxes. However, the primary N influxes were stubble incorporation and animal manure addition for the OF system, and chemical-N fertilizers for the CF system. Net C depletions were observed in both the CF and OF systems. However, net N was depleted and accumulated in the CF and OF systems, respectively. Straw incorporation to soils could restore the net C accumulations for the CF and OF systems and elevate the net N accumulation for both systems. This study highlighted that complete straw removal has exacerbated the C and N stock in soil-rice systems, inducing insecurity for the environment and the agricultural systems. Effective straw management is a simple approach for sustaining paddy rice production.\",\"PeriodicalId\":11784,\"journal\":{\"name\":\"Environment and Natural Resources Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment and Natural Resources Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32526/ennrj/20/202200019\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Environmental Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment and Natural Resources Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32526/ennrj/20/202200019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Environmental Science","Score":null,"Total":0}
Biogeochemical Cycling of Carbon and Nitrogen in Rainfed Rice Production Under Conventional and Organic Rice Farming
Dwindling carbon (C) and nitrogen (N) levels in paddy soils decreases rice production and threaten human food security globally. The efficient maintenance of C and N fluxes in soil-rice systems is a crucial prerequisite for agricultural and environmental sustainability. Herein, we examined the C and N fluxes from 63 rainfed rice paddy fields under conventional farming (CF) and organic farming (OF) systems in Thailand. The C and N fluxes were measured based on a detailed analysis of relevant influxes (fertilizer, manure, and biomass addition) and effluxes (biomass harvest and greenhouse gas emission). The results demonstrated that the harvested grain and straw contributed to the most abundant C and N effluxes for both farming systems. The CH4 effluxes were moderate, whereas the N2O effluxes were meager relative to their total effluxes. Stubble incorporation and animal manure addition to soil were the most extensive C influxes. However, the primary N influxes were stubble incorporation and animal manure addition for the OF system, and chemical-N fertilizers for the CF system. Net C depletions were observed in both the CF and OF systems. However, net N was depleted and accumulated in the CF and OF systems, respectively. Straw incorporation to soils could restore the net C accumulations for the CF and OF systems and elevate the net N accumulation for both systems. This study highlighted that complete straw removal has exacerbated the C and N stock in soil-rice systems, inducing insecurity for the environment and the agricultural systems. Effective straw management is a simple approach for sustaining paddy rice production.
期刊介绍:
The Environment and Natural Resources Journal is a peer-reviewed journal, which provides insight scientific knowledge into the diverse dimensions of integrated environmental and natural resource management. The journal aims to provide a platform for exchange and distribution of the knowledge and cutting-edge research in the fields of environmental science and natural resource management to academicians, scientists and researchers. The journal accepts a varied array of manuscripts on all aspects of environmental science and natural resource management. The journal scope covers the integration of multidisciplinary sciences for prevention, control, treatment, environmental clean-up and restoration. The study of the existing or emerging problems of environment and natural resources in the region of Southeast Asia and the creation of novel knowledge and/or recommendations of mitigation measures for sustainable development policies are emphasized. The subject areas are diverse, but specific topics of interest include: -Biodiversity -Climate change -Detection and monitoring of polluted sources e.g., industry, mining -Disaster e.g., forest fire, flooding, earthquake, tsunami, or tidal wave -Ecological/Environmental modelling -Emerging contaminants/hazardous wastes investigation and remediation -Environmental dynamics e.g., coastal erosion, sea level rise -Environmental assessment tools, policy and management e.g., GIS, remote sensing, Environmental -Management System (EMS) -Environmental pollution and other novel solutions to pollution -Remediation technology of contaminated environments -Transboundary pollution -Waste and wastewater treatments and disposal technology