含非局部q积分边界条件的混合分数阶q积分差分方程的研究

IF 2 3区 数学 Q1 MATHEMATICS
A. Alsaedi, B. Ahmad, H. Al-Hutami, Boshra Alharbi
{"title":"含非局部q积分边界条件的混合分数阶q积分差分方程的研究","authors":"A. Alsaedi, B. Ahmad, H. Al-Hutami, Boshra Alharbi","doi":"10.1515/dema-2022-0222","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we introduce and study a new class of hybrid fractional q q -integro-difference equations involving Riemann-Liouville q q -derivatives, supplemented with nonlocal boundary conditions containing Riemann-Liouville q q -integrals of different orders. The existence of a unique solution to the given problem is shown by applying Banach’s fixed point theorem. We also present the existing criteria for solutions to the problem at hand by applying Krasnoselskii’s fixed point theorem and Leray-Schauder’s nonlinear alternative. Illustrative examples are given to demonstrate the application of the obtained results. Some new results follow as special cases of this work.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of hybrid fractional q-integro-difference equations supplemented with nonlocal q-integral boundary conditions\",\"authors\":\"A. Alsaedi, B. Ahmad, H. Al-Hutami, Boshra Alharbi\",\"doi\":\"10.1515/dema-2022-0222\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this article, we introduce and study a new class of hybrid fractional q q -integro-difference equations involving Riemann-Liouville q q -derivatives, supplemented with nonlocal boundary conditions containing Riemann-Liouville q q -integrals of different orders. The existence of a unique solution to the given problem is shown by applying Banach’s fixed point theorem. We also present the existing criteria for solutions to the problem at hand by applying Krasnoselskii’s fixed point theorem and Leray-Schauder’s nonlinear alternative. Illustrative examples are given to demonstrate the application of the obtained results. Some new results follow as special cases of this work.\",\"PeriodicalId\":10995,\"journal\":{\"name\":\"Demonstratio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2023-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demonstratio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2022-0222\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2022-0222","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文引入并研究了一类新的杂化分数阶q q -积分-差分方程,该方程包含Riemann-Liouville q q -导数,并补充了包含不同阶Riemann-Liouville q q -积分的非局部边界条件。利用巴拿赫不动点定理,证明了问题解的存在性。我们还利用Krasnoselskii不动点定理和Leray-Schauder的非线性替代给出了现有的问题解的判据。通过实例说明所得结果的应用。作为这项工作的特例,一些新的结果也随之而来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of hybrid fractional q-integro-difference equations supplemented with nonlocal q-integral boundary conditions
Abstract In this article, we introduce and study a new class of hybrid fractional q q -integro-difference equations involving Riemann-Liouville q q -derivatives, supplemented with nonlocal boundary conditions containing Riemann-Liouville q q -integrals of different orders. The existence of a unique solution to the given problem is shown by applying Banach’s fixed point theorem. We also present the existing criteria for solutions to the problem at hand by applying Krasnoselskii’s fixed point theorem and Leray-Schauder’s nonlinear alternative. Illustrative examples are given to demonstrate the application of the obtained results. Some new results follow as special cases of this work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
5.00%
发文量
37
审稿时长
35 weeks
期刊介绍: Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信