D. Khusainov, A. Bychkov, A. Sirenko, Jamshid Buranov
{"title":"具有一定切换的动态系统的稳定性","authors":"D. Khusainov, A. Bychkov, A. Sirenko, Jamshid Buranov","doi":"10.34229/1028-0979-2021-3-1","DOIUrl":null,"url":null,"abstract":"This work is devoted to the further development of the study of the stability of dynamic systems with switchings. There are many different classes of dynamical systems described by switched equations. The authors of the work divide systems with switches into two classes. Namely, on systems with definite and indefinite switchings. In this paper, the system with certain switching, namely a system composed of differential and difference sub-systems with the condition of decreasing Lyapunov function. One of the most versatile methods of studying the stability of the zero equilibrium state is the second Lyapunov method, or the method of Lyapunov functions. When using it, a positive definite function is selected that satisfies certain properties on the solutions of the system. If a system of differential equations is considered, then the condition of non-positiveness (negative definiteness) of the total derivative due to the system is imposed. If a difference system of equations is considered, then the first difference is considered by virtue of the system. For more general dynamical systems (in particular, for systems with switchings), the condition is imposed that the Lyapunov function does not increase (decrease) along the solutions of the system. Since the paper considers a system consisting of differential and difference subsystems, the condition of non-increase (decrease of the Lyapunov function) is used.For a specific type of subsystems (linear), the conditions for not increasing (decreasing) are specified. The basic idea of using the second Lyapunov method for systems of this type is to construct a sequence of Lyapunov functions, in which the level surfaces of the next Lyapunov function at the switching points are either «stitched» or «contain the level surface of the previous function».","PeriodicalId":54874,"journal":{"name":"Journal of Automation and Information Sciences","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ON THE STABILITY OF DYNAMIC SYSTEMS WITH CERTAIN SWITCHINGS, WHICH CONSISTS OF LINEAR SUBSYSTEMS WITHOUT DELAY\",\"authors\":\"D. Khusainov, A. Bychkov, A. Sirenko, Jamshid Buranov\",\"doi\":\"10.34229/1028-0979-2021-3-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work is devoted to the further development of the study of the stability of dynamic systems with switchings. There are many different classes of dynamical systems described by switched equations. The authors of the work divide systems with switches into two classes. Namely, on systems with definite and indefinite switchings. In this paper, the system with certain switching, namely a system composed of differential and difference sub-systems with the condition of decreasing Lyapunov function. One of the most versatile methods of studying the stability of the zero equilibrium state is the second Lyapunov method, or the method of Lyapunov functions. When using it, a positive definite function is selected that satisfies certain properties on the solutions of the system. If a system of differential equations is considered, then the condition of non-positiveness (negative definiteness) of the total derivative due to the system is imposed. If a difference system of equations is considered, then the first difference is considered by virtue of the system. For more general dynamical systems (in particular, for systems with switchings), the condition is imposed that the Lyapunov function does not increase (decrease) along the solutions of the system. Since the paper considers a system consisting of differential and difference subsystems, the condition of non-increase (decrease of the Lyapunov function) is used.For a specific type of subsystems (linear), the conditions for not increasing (decreasing) are specified. The basic idea of using the second Lyapunov method for systems of this type is to construct a sequence of Lyapunov functions, in which the level surfaces of the next Lyapunov function at the switching points are either «stitched» or «contain the level surface of the previous function».\",\"PeriodicalId\":54874,\"journal\":{\"name\":\"Journal of Automation and Information Sciences\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation and Information Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34229/1028-0979-2021-3-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation and Information Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34229/1028-0979-2021-3-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
ON THE STABILITY OF DYNAMIC SYSTEMS WITH CERTAIN SWITCHINGS, WHICH CONSISTS OF LINEAR SUBSYSTEMS WITHOUT DELAY
This work is devoted to the further development of the study of the stability of dynamic systems with switchings. There are many different classes of dynamical systems described by switched equations. The authors of the work divide systems with switches into two classes. Namely, on systems with definite and indefinite switchings. In this paper, the system with certain switching, namely a system composed of differential and difference sub-systems with the condition of decreasing Lyapunov function. One of the most versatile methods of studying the stability of the zero equilibrium state is the second Lyapunov method, or the method of Lyapunov functions. When using it, a positive definite function is selected that satisfies certain properties on the solutions of the system. If a system of differential equations is considered, then the condition of non-positiveness (negative definiteness) of the total derivative due to the system is imposed. If a difference system of equations is considered, then the first difference is considered by virtue of the system. For more general dynamical systems (in particular, for systems with switchings), the condition is imposed that the Lyapunov function does not increase (decrease) along the solutions of the system. Since the paper considers a system consisting of differential and difference subsystems, the condition of non-increase (decrease of the Lyapunov function) is used.For a specific type of subsystems (linear), the conditions for not increasing (decreasing) are specified. The basic idea of using the second Lyapunov method for systems of this type is to construct a sequence of Lyapunov functions, in which the level surfaces of the next Lyapunov function at the switching points are either «stitched» or «contain the level surface of the previous function».
期刊介绍:
This journal contains translations of papers from the Russian-language bimonthly "Mezhdunarodnyi nauchno-tekhnicheskiy zhurnal "Problemy upravleniya i informatiki". Subjects covered include information sciences such as pattern recognition, forecasting, identification and evaluation of complex systems, information security, fault diagnosis and reliability. In addition, the journal also deals with such automation subjects as adaptive, stochastic and optimal control, control and identification under uncertainty, robotics, and applications of user-friendly computers in management of economic, industrial, biological, and medical systems. The Journal of Automation and Information Sciences will appeal to professionals in control systems, communications, computers, engineering in biology and medicine, instrumentation and measurement, and those interested in the social implications of technology.