关于多元分数阶Taylor和Cauchy中值定理

IF 0.8 4区 数学
Jinfa Cheng
{"title":"关于多元分数阶Taylor和Cauchy中值定理","authors":"Jinfa Cheng","doi":"10.4208/JMS.V52N1.19.04","DOIUrl":null,"url":null,"abstract":"In this paper, a generalized multivariate fractional Taylor’s and Cauchy’s mean value theorem of the kind f (x,y)= n ∑ j=0 Djα f (x0,y0) Γ(jα+1) +Rn(ξ,η), f (x,y)− n ∑ j=0 Djα f (x0,y0) Γ(jα+1) g(x,y)− n ∑ j=0 Dg(x0,y0) Γ(jα+1) = Rn(ξ,η) Tα n (ξ,η) , where 0< α≤ 1, is established. Such expression is precisely the classical Taylor’s and Cauchy’s mean value theorem in the particular case α=1. In addition, detailed expressions for Rn(ξ,η) and Tα n (ξ,η) involving the sequential Caputo fractional derivative are also given. AMS subject classifications: 65M70, 65L60, 41A10, 60H35","PeriodicalId":43526,"journal":{"name":"数学研究","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On Multivariate Fractional Taylor’s and Cauchy’ Mean Value Theorem\",\"authors\":\"Jinfa Cheng\",\"doi\":\"10.4208/JMS.V52N1.19.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a generalized multivariate fractional Taylor’s and Cauchy’s mean value theorem of the kind f (x,y)= n ∑ j=0 Djα f (x0,y0) Γ(jα+1) +Rn(ξ,η), f (x,y)− n ∑ j=0 Djα f (x0,y0) Γ(jα+1) g(x,y)− n ∑ j=0 Dg(x0,y0) Γ(jα+1) = Rn(ξ,η) Tα n (ξ,η) , where 0< α≤ 1, is established. Such expression is precisely the classical Taylor’s and Cauchy’s mean value theorem in the particular case α=1. In addition, detailed expressions for Rn(ξ,η) and Tα n (ξ,η) involving the sequential Caputo fractional derivative are also given. AMS subject classifications: 65M70, 65L60, 41A10, 60H35\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/JMS.V52N1.19.04\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/JMS.V52N1.19.04","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文给出了f(x,y)=n∑j=0 Djαf(x0,y0)Γ(jα+1)+Rn(ξ,η,已建立。这种表达式正是在特定情况下α=1的经典泰勒和柯西中值定理。此外,还给出了涉及序列Caputo分数导数的Rn(ξ,η)和Tαn(ξ.,η)的详细表达式。AMS受试者分类:65M70、65L60、41A10、60H35
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Multivariate Fractional Taylor’s and Cauchy’ Mean Value Theorem
In this paper, a generalized multivariate fractional Taylor’s and Cauchy’s mean value theorem of the kind f (x,y)= n ∑ j=0 Djα f (x0,y0) Γ(jα+1) +Rn(ξ,η), f (x,y)− n ∑ j=0 Djα f (x0,y0) Γ(jα+1) g(x,y)− n ∑ j=0 Dg(x0,y0) Γ(jα+1) = Rn(ξ,η) Tα n (ξ,η) , where 0< α≤ 1, is established. Such expression is precisely the classical Taylor’s and Cauchy’s mean value theorem in the particular case α=1. In addition, detailed expressions for Rn(ξ,η) and Tα n (ξ,η) involving the sequential Caputo fractional derivative are also given. AMS subject classifications: 65M70, 65L60, 41A10, 60H35
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍: Journal of Mathematical Study (JMS) is a comprehensive mathematical journal published jointly by Global Science Press and Xiamen University. It publishes original research and survey papers, in English, of high scientific value in all major fields of mathematics, including pure mathematics, applied mathematics, operational research, and computational mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信