关于多元分数阶Taylor和Cauchy中值定理

IF 0.8 4区 数学
Jinfa Cheng
{"title":"关于多元分数阶Taylor和Cauchy中值定理","authors":"Jinfa Cheng","doi":"10.4208/JMS.V52N1.19.04","DOIUrl":null,"url":null,"abstract":"In this paper, a generalized multivariate fractional Taylor’s and Cauchy’s mean value theorem of the kind f (x,y)= n ∑ j=0 Djα f (x0,y0) Γ(jα+1) +Rn(ξ,η), f (x,y)− n ∑ j=0 Djα f (x0,y0) Γ(jα+1) g(x,y)− n ∑ j=0 Dg(x0,y0) Γ(jα+1) = Rn(ξ,η) Tα n (ξ,η) , where 0< α≤ 1, is established. Such expression is precisely the classical Taylor’s and Cauchy’s mean value theorem in the particular case α=1. In addition, detailed expressions for Rn(ξ,η) and Tα n (ξ,η) involving the sequential Caputo fractional derivative are also given. AMS subject classifications: 65M70, 65L60, 41A10, 60H35","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On Multivariate Fractional Taylor’s and Cauchy’ Mean Value Theorem\",\"authors\":\"Jinfa Cheng\",\"doi\":\"10.4208/JMS.V52N1.19.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a generalized multivariate fractional Taylor’s and Cauchy’s mean value theorem of the kind f (x,y)= n ∑ j=0 Djα f (x0,y0) Γ(jα+1) +Rn(ξ,η), f (x,y)− n ∑ j=0 Djα f (x0,y0) Γ(jα+1) g(x,y)− n ∑ j=0 Dg(x0,y0) Γ(jα+1) = Rn(ξ,η) Tα n (ξ,η) , where 0< α≤ 1, is established. Such expression is precisely the classical Taylor’s and Cauchy’s mean value theorem in the particular case α=1. In addition, detailed expressions for Rn(ξ,η) and Tα n (ξ,η) involving the sequential Caputo fractional derivative are also given. AMS subject classifications: 65M70, 65L60, 41A10, 60H35\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/JMS.V52N1.19.04\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/JMS.V52N1.19.04","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文给出了f(x,y)=n∑j=0 Djαf(x0,y0)Γ(jα+1)+Rn(ξ,η,已建立。这种表达式正是在特定情况下α=1的经典泰勒和柯西中值定理。此外,还给出了涉及序列Caputo分数导数的Rn(ξ,η)和Tαn(ξ.,η)的详细表达式。AMS受试者分类:65M70、65L60、41A10、60H35
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On Multivariate Fractional Taylor’s and Cauchy’ Mean Value Theorem
In this paper, a generalized multivariate fractional Taylor’s and Cauchy’s mean value theorem of the kind f (x,y)= n ∑ j=0 Djα f (x0,y0) Γ(jα+1) +Rn(ξ,η), f (x,y)− n ∑ j=0 Djα f (x0,y0) Γ(jα+1) g(x,y)− n ∑ j=0 Dg(x0,y0) Γ(jα+1) = Rn(ξ,η) Tα n (ξ,η) , where 0< α≤ 1, is established. Such expression is precisely the classical Taylor’s and Cauchy’s mean value theorem in the particular case α=1. In addition, detailed expressions for Rn(ξ,η) and Tα n (ξ,η) involving the sequential Caputo fractional derivative are also given. AMS subject classifications: 65M70, 65L60, 41A10, 60H35
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
数学研究
数学研究 MATHEMATICS-
自引率
0.00%
发文量
1109
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信