{"title":"关于多元分数阶Taylor和Cauchy中值定理","authors":"Jinfa Cheng","doi":"10.4208/JMS.V52N1.19.04","DOIUrl":null,"url":null,"abstract":"In this paper, a generalized multivariate fractional Taylor’s and Cauchy’s mean value theorem of the kind f (x,y)= n ∑ j=0 Djα f (x0,y0) Γ(jα+1) +Rn(ξ,η), f (x,y)− n ∑ j=0 Djα f (x0,y0) Γ(jα+1) g(x,y)− n ∑ j=0 Dg(x0,y0) Γ(jα+1) = Rn(ξ,η) Tα n (ξ,η) , where 0< α≤ 1, is established. Such expression is precisely the classical Taylor’s and Cauchy’s mean value theorem in the particular case α=1. In addition, detailed expressions for Rn(ξ,η) and Tα n (ξ,η) involving the sequential Caputo fractional derivative are also given. AMS subject classifications: 65M70, 65L60, 41A10, 60H35","PeriodicalId":43526,"journal":{"name":"数学研究","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"On Multivariate Fractional Taylor’s and Cauchy’ Mean Value Theorem\",\"authors\":\"Jinfa Cheng\",\"doi\":\"10.4208/JMS.V52N1.19.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a generalized multivariate fractional Taylor’s and Cauchy’s mean value theorem of the kind f (x,y)= n ∑ j=0 Djα f (x0,y0) Γ(jα+1) +Rn(ξ,η), f (x,y)− n ∑ j=0 Djα f (x0,y0) Γ(jα+1) g(x,y)− n ∑ j=0 Dg(x0,y0) Γ(jα+1) = Rn(ξ,η) Tα n (ξ,η) , where 0< α≤ 1, is established. Such expression is precisely the classical Taylor’s and Cauchy’s mean value theorem in the particular case α=1. In addition, detailed expressions for Rn(ξ,η) and Tα n (ξ,η) involving the sequential Caputo fractional derivative are also given. AMS subject classifications: 65M70, 65L60, 41A10, 60H35\",\"PeriodicalId\":43526,\"journal\":{\"name\":\"数学研究\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"数学研究\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4208/JMS.V52N1.19.04\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"数学研究","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4208/JMS.V52N1.19.04","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Multivariate Fractional Taylor’s and Cauchy’ Mean Value Theorem
In this paper, a generalized multivariate fractional Taylor’s and Cauchy’s mean value theorem of the kind f (x,y)= n ∑ j=0 Djα f (x0,y0) Γ(jα+1) +Rn(ξ,η), f (x,y)− n ∑ j=0 Djα f (x0,y0) Γ(jα+1) g(x,y)− n ∑ j=0 Dg(x0,y0) Γ(jα+1) = Rn(ξ,η) Tα n (ξ,η) , where 0< α≤ 1, is established. Such expression is precisely the classical Taylor’s and Cauchy’s mean value theorem in the particular case α=1. In addition, detailed expressions for Rn(ξ,η) and Tα n (ξ,η) involving the sequential Caputo fractional derivative are also given. AMS subject classifications: 65M70, 65L60, 41A10, 60H35