{"title":"物理中一些非线性偏微分方程的无网格Runge–Kutta方法","authors":"M. Mohammadi, A. Shirzadi","doi":"10.1007/s10598-023-09579-0","DOIUrl":null,"url":null,"abstract":"","PeriodicalId":55875,"journal":{"name":"Computational Mathematics and Modeling","volume":"33 1","pages":"375-387"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Meshless Runge–Kutta Method for Some Nonlinear PDEs Arising in Physics\",\"authors\":\"M. Mohammadi, A. Shirzadi\",\"doi\":\"10.1007/s10598-023-09579-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\",\"PeriodicalId\":55875,\"journal\":{\"name\":\"Computational Mathematics and Modeling\",\"volume\":\"33 1\",\"pages\":\"375-387\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational Mathematics and Modeling\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s10598-023-09579-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Mathematics and Modeling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10598-023-09579-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Mathematics","Score":null,"Total":0}
期刊介绍:
Computational Mathematics and Modeling focuses on important Russian contributions to computational mathematics that are useful to the applied scientist or engineer. This quarterly publication presents timely research articles by scientists from Moscow State University, an institution recognized worldwide for influential contributions to this subject. Numerical analysis, control theory, and the interplay of modeling and computational mathematics are among the featured topics.