基于KNN分类的HSI和LBP特征提取对佛手柑果实成熟度的鉴别

Siska Anraeni, Erika Riski Melani, H. Herman
{"title":"基于KNN分类的HSI和LBP特征提取对佛手柑果实成熟度的鉴别","authors":"Siska Anraeni, Erika Riski Melani, H. Herman","doi":"10.33096/ilkom.v14i2.1153.150-159","DOIUrl":null,"url":null,"abstract":"This study aims to build a system to identify the ripeness level of chayote that can be done easily and without damaging the quality of the chayote. This study employs digital image processing technology using Hue Saturation Intensity color feature extraction and texture feature extraction of Local Binary Pattern with K-Nearest Neighbor classification so that the process of identifying the ripeness level of chayote will be easier and more effective. This study uses 100 image datasets and is carried out by taking photos of chayote. The stages in this study include the input of chayote images followed by the image pre-processing stage. Next is feature extraction which is divided into three scenarios, namely HSI feature extraction, LBP feature extraction and a combination of the two feature extractions. The final stage is to classify objects that are closest to the object being tested using the KNN method. By determining the value of K in the KNN classification method, the results show that the use of the Chebyshev distance calculation model in LBP feature extraction with K = 5 is a test that has the best accuracy of 90%.","PeriodicalId":33690,"journal":{"name":"Ilkom Jurnal Ilmiah","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ripeness Identification of Chayote Fruits using HSI and LBP Feature Extraction with KNN Classification\",\"authors\":\"Siska Anraeni, Erika Riski Melani, H. Herman\",\"doi\":\"10.33096/ilkom.v14i2.1153.150-159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aims to build a system to identify the ripeness level of chayote that can be done easily and without damaging the quality of the chayote. This study employs digital image processing technology using Hue Saturation Intensity color feature extraction and texture feature extraction of Local Binary Pattern with K-Nearest Neighbor classification so that the process of identifying the ripeness level of chayote will be easier and more effective. This study uses 100 image datasets and is carried out by taking photos of chayote. The stages in this study include the input of chayote images followed by the image pre-processing stage. Next is feature extraction which is divided into three scenarios, namely HSI feature extraction, LBP feature extraction and a combination of the two feature extractions. The final stage is to classify objects that are closest to the object being tested using the KNN method. By determining the value of K in the KNN classification method, the results show that the use of the Chebyshev distance calculation model in LBP feature extraction with K = 5 is a test that has the best accuracy of 90%.\",\"PeriodicalId\":33690,\"journal\":{\"name\":\"Ilkom Jurnal Ilmiah\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ilkom Jurnal Ilmiah\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33096/ilkom.v14i2.1153.150-159\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ilkom Jurnal Ilmiah","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33096/ilkom.v14i2.1153.150-159","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在建立一个简便、不损害佛手瓜品质的佛手瓜成熟度鉴定系统。本研究采用数字图像处理技术,采用基于k近邻分类的局部二值模式的色相饱和度强度颜色特征提取和纹理特征提取,使佛手瓜成熟程度的识别过程更加简单有效。本研究使用100个图像数据集,并通过拍摄佛手柑的照片来进行。本研究的阶段包括佛手柑图像的输入和图像预处理阶段。接下来是特征提取,分为三种场景,即HSI特征提取、LBP特征提取和两种特征提取的结合。最后一个阶段是使用KNN方法对最接近被测试对象的对象进行分类。通过确定KNN分类方法中K的值,结果表明,当K = 5时,在LBP特征提取中使用切比雪夫距离计算模型是一种准确率达到90%的最佳测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ripeness Identification of Chayote Fruits using HSI and LBP Feature Extraction with KNN Classification
This study aims to build a system to identify the ripeness level of chayote that can be done easily and without damaging the quality of the chayote. This study employs digital image processing technology using Hue Saturation Intensity color feature extraction and texture feature extraction of Local Binary Pattern with K-Nearest Neighbor classification so that the process of identifying the ripeness level of chayote will be easier and more effective. This study uses 100 image datasets and is carried out by taking photos of chayote. The stages in this study include the input of chayote images followed by the image pre-processing stage. Next is feature extraction which is divided into three scenarios, namely HSI feature extraction, LBP feature extraction and a combination of the two feature extractions. The final stage is to classify objects that are closest to the object being tested using the KNN method. By determining the value of K in the KNN classification method, the results show that the use of the Chebyshev distance calculation model in LBP feature extraction with K = 5 is a test that has the best accuracy of 90%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
4 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信