{"title":"具有最大可分辨集的Wellfoundness证明","authors":"Toshiyasu Arai","doi":"10.1007/s00153-022-00840-8","DOIUrl":null,"url":null,"abstract":"<div><p>In Arai (An ordinal analysis of a single stable ordinal, submitted) it is shown that an ordinal <span>\\(\\sup _{N<\\omega }\\psi _{\\varOmega _{1}}(\\varepsilon _{\\varOmega _{{\\mathbb {S}}+N}+1})\\)</span> is an upper bound for the proof-theoretic ordinal of a set theory <span>\\(\\mathsf {KP}\\ell ^{r}+(M\\prec _{\\Sigma _{1}}V)\\)</span>. In this paper we show that a second order arithmetic <span>\\(\\Sigma ^{1-}_{2}{\\mathrm {-CA}}+\\Pi ^{1}_{1}{\\mathrm {-CA}}_{0}\\)</span> proves the wellfoundedness up to <span>\\(\\psi _{\\varOmega _{1}}(\\varepsilon _{\\varOmega _{{\\mathbb {S}}+N+1}})\\)</span> for each <i>N</i>. It is easy to interpret <span>\\(\\Sigma ^{1-}_{2}{\\mathrm {-CA}}+\\Pi ^{1}_{1}{\\mathrm {-CA}}_{0}\\)</span> in <span>\\(\\mathsf {KP}\\ell ^{r}+(M\\prec _{\\Sigma _{1}}V)\\)</span>.</p></div>","PeriodicalId":48853,"journal":{"name":"Archive for Mathematical Logic","volume":"62 3-4","pages":"333 - 357"},"PeriodicalIF":0.3000,"publicationDate":"2022-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Wellfoundedness proof with the maximal distinguished set\",\"authors\":\"Toshiyasu Arai\",\"doi\":\"10.1007/s00153-022-00840-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In Arai (An ordinal analysis of a single stable ordinal, submitted) it is shown that an ordinal <span>\\\\(\\\\sup _{N<\\\\omega }\\\\psi _{\\\\varOmega _{1}}(\\\\varepsilon _{\\\\varOmega _{{\\\\mathbb {S}}+N}+1})\\\\)</span> is an upper bound for the proof-theoretic ordinal of a set theory <span>\\\\(\\\\mathsf {KP}\\\\ell ^{r}+(M\\\\prec _{\\\\Sigma _{1}}V)\\\\)</span>. In this paper we show that a second order arithmetic <span>\\\\(\\\\Sigma ^{1-}_{2}{\\\\mathrm {-CA}}+\\\\Pi ^{1}_{1}{\\\\mathrm {-CA}}_{0}\\\\)</span> proves the wellfoundedness up to <span>\\\\(\\\\psi _{\\\\varOmega _{1}}(\\\\varepsilon _{\\\\varOmega _{{\\\\mathbb {S}}+N+1}})\\\\)</span> for each <i>N</i>. It is easy to interpret <span>\\\\(\\\\Sigma ^{1-}_{2}{\\\\mathrm {-CA}}+\\\\Pi ^{1}_{1}{\\\\mathrm {-CA}}_{0}\\\\)</span> in <span>\\\\(\\\\mathsf {KP}\\\\ell ^{r}+(M\\\\prec _{\\\\Sigma _{1}}V)\\\\)</span>.</p></div>\",\"PeriodicalId\":48853,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":\"62 3-4\",\"pages\":\"333 - 357\"},\"PeriodicalIF\":0.3000,\"publicationDate\":\"2022-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00153-022-00840-8\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s00153-022-00840-8","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Arts and Humanities","Score":null,"Total":0}
Wellfoundedness proof with the maximal distinguished set
In Arai (An ordinal analysis of a single stable ordinal, submitted) it is shown that an ordinal \(\sup _{N<\omega }\psi _{\varOmega _{1}}(\varepsilon _{\varOmega _{{\mathbb {S}}+N}+1})\) is an upper bound for the proof-theoretic ordinal of a set theory \(\mathsf {KP}\ell ^{r}+(M\prec _{\Sigma _{1}}V)\). In this paper we show that a second order arithmetic \(\Sigma ^{1-}_{2}{\mathrm {-CA}}+\Pi ^{1}_{1}{\mathrm {-CA}}_{0}\) proves the wellfoundedness up to \(\psi _{\varOmega _{1}}(\varepsilon _{\varOmega _{{\mathbb {S}}+N+1}})\) for each N. It is easy to interpret \(\Sigma ^{1-}_{2}{\mathrm {-CA}}+\Pi ^{1}_{1}{\mathrm {-CA}}_{0}\) in \(\mathsf {KP}\ell ^{r}+(M\prec _{\Sigma _{1}}V)\).
期刊介绍:
The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.